

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 5

Topic :-DIFFERENTIAL EQUATIONS

- 1. The solution of the differential equation $\frac{x+y\frac{dy}{dx}}{y-x\frac{dy}{dx}} = x^2 + 2y^2 + \frac{y^4}{x^2}$ is a) $\frac{y}{4} + \frac{1}{x^2+y^2} = c$ b) $\frac{y}{x} - \frac{1}{x^2+y^2} = c$ c) $\frac{x}{y} - \frac{1}{x^2+y^2} = c$ d) None of these
- 2. The solution of differential equation $(1 + x)y \, dx + (1 y)x \, dy = 0$ is a) $\log_e(xy) + x - y = c$ b) $\log_e\left(\frac{x}{y}\right) + x + y = c$ c) $\log_e\left(\frac{x}{y}\right) - x + y = c$ d) $\log_e(xy) - x + y = c$
- 3. The differential equation representing the family of curves $y^2 = 2c(x + \sqrt{c})$, where c > 0 is a parameter is of order and degree as follows

a) Order 2, degree 2 b) Order 1, degree 3 c) Order 1, degree 1 d) Order 1, degree 2

4. The solution of the differential equation $\frac{dy}{dx} = \frac{1}{x^2 + y^2}$ is a) $y = -x^2 - 2x - 2 + ce^x$ b) $y = x^2 + 2x + 2 - ce^x$ c) $x = -y^2 - 2y + 2 - ce^y$ d) $x = -y^2 - 2y - 2 + ce^y$

5. Integrating factor of $(x + 2y^3)\frac{dy}{dx} = y^2$ is a) $e^{\left(\frac{1}{y}\right)}$ b) $e^{-\left(\frac{1}{y}\right)}$ c) y d) $\frac{-1}{y}$

6. The curve in which the slope of the tangent at any point equals the ratio of the abscissa to the ordinate of the point is

a) An ellipse

b) A parabola

- c) A rectangular hyperbola
- d)A circle

7. The solution of the differential equation $(1 + y^2) + (x - e^{\tan^{-1}y})\frac{dy}{dx} = 0$ is

a) $2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + c$ b) $xe^{\tan^{-1}y} = \tan^{-1}y + c$ c) $xe^{2\tan^{-1}y} = e^{\tan^{-1}y} + c$ d) $(x-2) = ce^{-\tan^{-1}y}$

- 8. The differential equation $(e^{x} + 1)y dy = (y + 1)e^{x} dx$, has the solution a) $(y - 1)(e^{x} - 1) = ce^{y}$ b) $(y - 1)(e^{x} + 1) = ce^{y}$ c) $(y + 1)(e^{x} - 1) = ce^{y}$ d) $(y + 1)(e^{x} + 1) = ce^{y}$
- 9. The differential equation of all straight lines passing through origin is

a) $y = \sqrt{x} \frac{dy}{dx}$ b) $\frac{dy}{dx} = y + x$ c) $\frac{dy}{dx} = y - x$ d) None of these 10. The solution of the differential equation $\frac{dy}{dx} = \sin (x + y)\tan(x + y) - 1$ is a) $\csc(x + y) + \tan(x + y) = x + c$ b) $x + \csc(x + y) = c$ c) $x + \tan(x + y) = c$ d) $x + \sec(x + y) = c$

11. The differential equation for which $\sin^{-1} x + \sin^{-1} y = c$ is given by a) $\sqrt{1 - x^2} dy + \sqrt{1 - y^2} dx = 0$ b) $\sqrt{1 - x^2} dx + \sqrt{1 - y^2} dy = 0$ c) $\sqrt{1 - x^2} dx - \sqrt{1 - y^2} dy = 0$ d) $\sqrt{1 - x^2} dy - \sqrt{1 - y^2} dx = 0$

12. The integrating factor of $x \frac{dy}{dx} + (1 + x)y = x$ is a) x b) 2x c) $e^{x \log x}$ d) xe^{x}

13. The solution of the differential equation $(x + 2y^3)\frac{dy}{dx} = y$, is a) $x = y^2 + C$ b) $y = x^2 + C$ c) $x = y(y^2 + C)$ d) $y = x(x^2 + C)$

14. The order of the differential equation $\frac{d^2y}{dx^2} = \sqrt{1 + (\frac{dy}{dx})^3}$, is a) 2 b) 1 c) 3 d) 4

15. The number of solutions of $y' = \frac{y+1}{x-1}$, y(1) = 2 is a) Zero b) One c) Two d) Infinite

16. The solution of the differential equation $x(x - y)\frac{dy}{dx} = y(x + y)$, is a) $\frac{x}{y} + \log(xy) = c$ b) $\frac{y}{x} + \log(xy) = c$ c) $\frac{x}{y} + y\log x = c$ d) $\frac{x}{y} + x\log y = c$

17. The general solution of differential equation $\frac{dy}{dx} = \frac{x^2}{y^2}$, is a) $x^3 - y^3 = C$ b) $x^3 + y^3 = C$ c) $x^2 + y^2 = C$ d) $x^2 - y^2 = C$

18. The solution of the differential equation $\frac{d^2y}{dx^2} = e^{-2x}$ is $y = c_1 e^{-2x} + c_2 x + x_3$, where c_1 is

a) 1 b)
$$\frac{1}{4}$$
 c) $\frac{1}{2}$ d) 2

19. Solution of the equation $x \left(\frac{dy}{dx}\right)^2 + 2\sqrt{xy}\frac{dy}{dx} + y = 0$ is a) x + y = a b) $\sqrt{x} - \sqrt{y} = \sqrt{a}$ c) $x^2 + y^2 = a^2$ d) $\sqrt{x} + \sqrt{y} = c$

20. Form of the differential equation of all family of lines $y = mx + \frac{4}{m}$ by eliminating the arbitrary constant *m* is

a)
$$\frac{d^2y}{dx^2} = 0$$

b)
$$x \left(\frac{dy}{dx}\right)^2 - y \frac{dy}{dx} + 4 = 0$$

c)
$$x \left(\frac{dy}{dx}\right)^2 + y \frac{dy}{dx} + 4 = 0$$

d)
$$\frac{dy}{dx} = 0$$

