CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :-DIFFERENTIAL EQUATIONS

1. The solution of the differential equation $\frac{x+y \frac{d y}{d x}}{y-x \frac{d y}{d x}}=x^{2}+2 y^{2}+\frac{y^{4}}{x^{2}}$ is
a) $\frac{y}{4}+\frac{1}{x^{2}+y^{2}}=c$
b) $\frac{y}{x}-\frac{1}{x^{2}+y^{2}}=c$
c) $\frac{x}{y}-\frac{1}{x^{2}+y^{2}}=c$
d) None of these
2. The solution of differential equation $(1+x) y d x+(1-y) x d y=0$ is
a) $\log _{e}(x y)+x-y=c$
b) $\log _{e}\left(\frac{x}{y}\right)+x+y=c$
c) $\log _{e}\left(\frac{x}{y}\right)-x+y=c$
d) $\log _{e}(x y)-x+y=c$
3. The differential equation representing the family of curves $y^{2}=2 c(x+\sqrt{c})$, where $c>0$ is a parameter is of order and degree as follows
a) Order 2, degree 2
b) Order 1, degree 3
c) Order 1, degree 1
d) Order 1, degree 2
4. The solution of the differential equation $\frac{d y}{d x}=\frac{1}{x^{2}+y^{2}}$ is
a) $y=-x^{2}-2 x-2+c e^{x}$
b) $y=x^{2}+2 x+2-c e^{x}$
c) $x=-y^{2}-2 y+2-c e^{y}$
d) $x=-y^{2}-2 y-2+c e^{y}$
5. Integrating factor of $\left(x+2 y^{3}\right) \frac{d y}{d x}=y^{2}$ is
a) $e^{\left(\frac{1}{y}\right)}$
b) $e^{-\left(\frac{1}{y}\right)}$
c) y
d) $\frac{-1}{y}$
6. The curve in which the slope of the tangent at any point equals the ratio of the abscissa to the ordinate of the point is
a) An ellipse
b) A parabola
c) A rectangular hyperbola
d) A circle
7. The solution of the differential equation $\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0$ is
a) $2 x e^{\tan ^{-1} y}=e^{2 \tan ^{-1} y}+c$
b) $x e^{\tan ^{-1} y}=\tan ^{-1} y+c$
c) $x e^{2 \tan ^{-1} y}=e^{\tan ^{-1} y}+c$
d) $(x-2)=c e^{-\tan ^{-1} y}$
8. The differential equation $\left(e^{x}+1\right) y d y=(y+1) e^{x} d x$, has the solution
a) $(y-1)\left(e^{x}-1\right)=c e^{y}$
b) $(y-1)\left(e^{x}+1\right)=c e^{y}$
c) $(y+1)\left(e^{x}-1\right)=c e^{y}$
d) $(y+1)\left(e^{x}+1\right)=c e^{y}$
9. The differential equation of all straight lines passing through origin is
a) $y=\sqrt{x} \frac{d y}{d x}$
b) $\frac{d y}{d x}=y+x$
c) $\frac{d y}{d x}=y-x$
d) None of these
10. The solution of the differential equation $\frac{d y}{d x}=\sin (x+y) \tan (x+y)-1$ is
a) $\operatorname{cosec}(x+y)+\tan (x+y)=x+c$
b) $x+\operatorname{cosec}(x+y)=c$
c) $x+\tan (x+y)=c$
d) $x+\sec (x+y)=c$
11. The differential equation for which $\sin ^{-1} x+\sin ^{-1} y=c$ is given by
a) $\sqrt{1-x^{2}} d y+\sqrt{1-y^{2}} d x=0$
b) $\sqrt{1-x^{2}} d x+\sqrt{1-y^{2}} d y=0$
c) $\sqrt{1-x^{2}} d x-\sqrt{1-y^{2}} d y=0$
d) $\sqrt{1-x^{2}} d y-\sqrt{1-y^{2}} d x=0$
12. The integrating factor of $x \frac{d y}{d x}+(1+x) y=x$ is
a) x
b) $2 x$
c) $e^{x \log x}$
d) $x e^{x}$
13. The solution of the differential equation $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$, is
a) $x=y^{2}+C$
b) $y=x^{2}+C$
c) $x=y\left(y^{2}+C\right)$
d) $y=x\left(x^{2}+C\right)$
14. The order of the differential equation $\frac{d^{2} y}{d x^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{3}}$, is
a) 2
b) 1
c) 3
d) 4
15. The number of solutions of $y^{\prime}=\frac{y+1}{x-1}, y(1)=2$ is
a) Zero
b) One
c) Two
d) Infinite
16. The solution of the differential equation $x(x-y) \frac{d y}{d x}=y(x+y)$, is
a) $\frac{x}{y}+\log (x y)=c$
b) $\frac{y}{x}+\log (x y)=c$
c) $\frac{x}{y}+y \log x=c$
d) $\frac{x}{y}+x \log y=c$
17. The general solution of differential equation $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$, is
a) $x^{3}-y^{3}=C$
b) $x^{3}+y^{3}=C$
c) $x^{2}+y^{2}=C$
d) $x^{2}-y^{2}=C$
18. The solution of the differential equation $\frac{d^{2} y}{d x^{2}}=e^{-2 x}$ is $y=c_{1} e^{-2 x}+c_{2} x+x_{3}$, where c_{1} is
a) 1
b) $\frac{1}{4}$
c) $\frac{1}{2}$
d) 2
19. Solution of the equation $x\left(\frac{d y}{d x}\right)^{2}+2 \sqrt{x y} \frac{d y}{d x}+y=0$ is
a) $x+y=a$
b) $\sqrt{x}-\sqrt{y}=\sqrt{a}$
c) $x^{2}+y^{2}=a^{2}$
d) $\sqrt{x}+\sqrt{y}=c$
20. Form of the differential equation of all family of lines $y=m x+\frac{4}{m}$ by eliminating the arbitrary constant m is
a) $\frac{d^{2} y}{d x^{2}}=0$
b) $x\left(\frac{d y}{d x}\right)^{2}-y \frac{d y}{d x}+4=0$
c) $x\left(\frac{d y}{d x}\right)^{2}+y \frac{d y}{d x}+4=0$
d) $\frac{d y}{d x}=0$

