

CLASS: XIIth DATE:

**SUBJECT: MATHS DPP NO.: 2** 

- The solution of the differential equation  $x \frac{dy}{dx} = 2y + x^3 e^x$ , where y = 0 when x = 1, is a)  $v = x^3(e^x - e)$  b)  $v = x^3(e - e^x)$  c)  $v = x^2(e^x - e)$  d)  $v = x^2(e - e^x)$

- 2. The solution of  $(1 + x^2)\frac{dy}{dx} + 2xy 4x^2 = 0$  is
  - a)  $3x(1+v^2) = 4v^3 + c$

b)  $3y(1+x^2) = 4x^3 + c$ 

c)  $3x(1-v^2) = 4v^3 + c$ 

- d)  $3v(1+v^2) = 4x^3 + c$
- 3. A normal is drawn at a P(x,y) of a curve. It meets the x-axis at Q. if PQ is of constant length k, then the differential equation describing such a curve is
  - a)  $y \frac{dy}{dx} = \pm \sqrt{k^2 y^2}$  b)  $x \frac{dy}{dx} = \pm \sqrt{k^2 x^2}$  c)  $y \frac{dy}{dx} = \pm \sqrt{y^2 k^2}$  d)  $x \frac{dy}{dx} = \pm \sqrt{x^2 k^2}$

- 4. The solution of the differential equation  $y_1y_3 = 3y_2^2$  is
  - a)  $x = A_1 y^2 + A_2 y + A_3$  b)  $x = A_1 y + A_2$
- c)  $x = A_1 y^2 + A_2 y$
- d) None of these

- 5. If  $x = A\cos 4t + B\sin 4t$ , then  $\frac{d^2x}{dt^2}$  is equal to
  - a) -16x
- b) 16x

- d) -x
- The order of the differential equation associated with the primitive  $y = c_1 + c_2 e^x + c_3 e^{-2x+c_4}$ , where  $c_1$ ,  $c_2$ ,  $c_3$ ,  $c_4$  are arbitrary constants, is
  - a) 3

b)4

c) 2

- d) None of these
- 7. The differential equation of all parabolas whose axes are parallel to axis of x, is
  - a)  $\frac{d^3y}{dx^3} = 0$
- b)  $\frac{d^3x}{dx^3} = 0$
- c)  $\frac{d^2y}{dy^2} + \frac{dy}{dy} = 0$  d)  $\frac{d^2x}{dy^2} = 0$
- The solution of the differential equation  $(x^2 yx^2)\frac{dy}{dx} + y^2 + xy^2 = 0$  is
  - a)  $\log\left(\frac{x}{y}\right) = \frac{1}{x} + \frac{1}{y} + c$

b)  $\log \left(\frac{y}{x}\right) = \frac{1}{x} + \frac{1}{y} + c$ 

c)  $\log(xy) = \frac{1}{x} + \frac{1}{y} + c$ 

d)  $\log(xy) + \frac{1}{x} + \frac{1}{y} = c$ 

9. The solution of the differential equation  $x dy - y dx - \sqrt{x^2 - y^2} dx = 0$  is

a) 
$$y - \sqrt{x^2 + y^2} = cx^2$$

b) 
$$y + \sqrt{x^2 + y^2} = cx^2$$

c) 
$$y + \sqrt{x^2 + y^2} = cy^2$$

d) 
$$x - \sqrt{x^2 + y^2} = cy^2$$

10. Solution of  $\frac{dy}{dx} = \frac{x \log x^2 + x}{\sin y + y \cos y}$  is

a) 
$$y\sin y = x^2\log x + c$$

b) 
$$y\sin y = x^2 + c$$

c) 
$$y\sin y = x^2 + \log x$$

d) 
$$y\sin y = x\log x + c$$

11. If integrating factor of  $x(1-x^2)dy + (2x^2y - y - ax^3)dx = 0$  is  $e^{\int Pdx}$ , then P is equal

a) 
$$\frac{2x^2 - ax^3}{x(1-x^2)}$$

b) 
$$2x^2 - 1$$

c) 
$$\frac{2x^2-1}{ax^3}$$

b) 
$$2x^2 - 1$$
 c)  $\frac{2x^2 - 1}{ax^3}$  d)  $\frac{2x^2 - 1}{x(1 - x^2)}$ 

12. The solution of the differential equation  $\frac{dy}{dx} + \frac{y}{x} = x^2$ , is

a) 
$$y = \frac{x^2}{4} + C x^{-2}$$
 b)  $y = x^{-1} + C x^{-3}$  c)  $y = \frac{x^3}{4} + C x^{-1}$  d)  $xy = x^2 + C$ 

b) 
$$y = x^{-1} + C x^{-3}$$

c) 
$$y = \frac{x^3}{4} + C x^{-1}$$

$$d) xy = x^2 + C$$

13. The differential equation of all circles passing through the origin and having their centres on the x-axis is

a) 
$$x^2 = y^2 + xy \frac{dy}{dx}$$

$$b) x^2 = y^2 + 3xy \frac{dy}{dx}$$

c) 
$$y^2 = x^2 + 2xy \frac{dy}{dx}$$

a) 
$$x^2 = y^2 + xy \frac{dy}{dx}$$
 b)  $x^2 = y^2 + 3xy \frac{dy}{dx}$  c)  $y^2 = x^2 + 2xy \frac{dy}{dx}$  d)  $y^2 = x^2 - 2xy \frac{dy}{dx}$ 

14. If y'' - 3y' + 2y = 0 where y(0) = 1, y'(0) = 0, then the value of y at  $x = \log 2$  is

15. The differential equation of all straight lines touching the circle  $x^2 + y^2 = a^2$  is

a) 
$$\left(y - \frac{dy}{dx}\right)^2 = a^2 \left[1 + \left(\frac{dy}{dx}\right)^2\right]$$

b) 
$$\left(y - x \frac{dy}{dx}\right)^2 = a^2 \left[1 + \left(\frac{dy}{dx}\right)^2\right]$$

c) 
$$\left(y - x \frac{dy}{dx}\right) = a^2 \left[1 + \frac{dy}{dx}\right]$$

d) 
$$\left(y - \frac{dy}{dx}\right) = a^2 \left[1 - \frac{dy}{dx}\right]$$

16. The solution of the differential equation  $(x^2 - yx^2)\frac{dy}{dx} + y^2 + xy^2 = 0$  is

a) 
$$\log\left(\frac{x}{y}\right) = \frac{1}{x} + \frac{1}{y} + c$$
 b)  $\log\left(\frac{y}{x}\right) = \frac{1}{x} + \frac{1}{y} + c$ 

a) 
$$\log\left(\frac{x}{y}\right) = \frac{1}{x} + \frac{1}{y} + c$$
 b)  $\log\left(\frac{y}{x}\right) = \frac{1}{x} + \frac{1}{y} + c$  c)  $\log(xy) = \frac{1}{x} + \frac{1}{y} + c$  d)  $\log(xy) + \frac{1}{x} + \frac{1}{y} = c$ 

17. The equation of the curve satisfying the equation  $(xy - x^2)\frac{dy}{dx} = y^2$  and passing through the point (-1,1) is

$$a) y = (\log y - 1)x$$

a) 
$$y = (\log y - 1)x$$
 b)  $y = (\log y + 1)x$  c)  $x = (\log x - 1)y$  d)  $x = (\log x + 1)y$ 

c) 
$$x = (\log x - 1)y$$

$$d)x = (\log x + 1)y$$

18.  $v = 2e^{2x} - e^{-x}$  is a solution of the differential equation

a) 
$$y_2 + y_1 + 2y = 0$$

a) 
$$y_2 + y_1 + 2y = 0$$
 b)  $y_2 - y_1 + 2y = 0$  c)  $y_2 + y_1 = 0$ 

c) 
$$y_2 + y_1 = 0$$

d) 
$$y_2 - y_1 - 2y = 0$$

- 19. The solution of y' y = 1, y(0) = -1 is given by y(x), which is equal to
  - a)  $-\exp(x)$
- b)  $-\exp(-x)$  c) -1

- d)  $\exp(x) 2$
- 20. The differential equation of the family of circles with fixed radius 5 unit and centre on the line y = 2, is
  - a)  $(x-2)^2y'^2 = 25 (y-2)^2$ c)  $(y-2)y'^2 = 25 (y-2)^2$

- b)  $(x-2)y'^2 = 25 (y-2)^2$ d)  $(y-2)^2y'^2 = 25 (y-2)^2$

