CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 2

Topic :-DIFFERENTIAL EQUATIONS

1. The solution of the differential equation $x \frac{d y}{d x}=2 y+x^{3} e^{x}$, where $y=0$ when $x=1$, is
a) $y=x^{3}\left(e^{x}-e\right)$
b) $y=x^{3}\left(e-e^{x}\right)$
c) $y=x^{2}\left(e^{x}-e\right)$
d) $y=x^{2}\left(e-e^{x}\right)$
2. The solution of $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y-4 x^{2}=0$ is
a) $3 x\left(1+y^{2}\right)=4 y^{3}+c$
b) $3 y\left(1+x^{2}\right)=4 x^{3}+c$
c) $3 x\left(1-y^{2}\right)=4 y^{3}+c$
d) $3 y\left(1+y^{2}\right)=4 x^{3}+c$
3. A normal is drawn at a $P(x, y)$ of a curve. It meets the x-axis at Q . if $P Q$ is of constant length k, then the differential equation describing such a curve is
a) $y \frac{d y}{d x}= \pm \sqrt{k^{2}-y^{2}}$
b) $x \frac{d y}{d x}= \pm \sqrt{k^{2}-x^{2}}$
c) $y \frac{d y}{d x}= \pm \sqrt{y^{2}-k^{2}}$
d) $x \frac{d y}{d x}= \pm \sqrt{x^{2}-k^{2}}$
4. The solution of the differential equation $y_{1} y_{3}=3 y_{2}^{2}$ is
a) $x=A_{1} y^{2}+A_{2} y+A_{3}$
b) $x=A_{1} y+A_{2}$
c) $x=A_{1} y^{2}+A_{2} y$
d) None of these
5. If $x=A \cos 4 t+B \sin 4 t$, then $\frac{d^{2} x}{d t^{2}}$ is equal to
a) $-16 x$
b) $16 x$
c) x
d) $-x$
6. The order of the differential equation associated with the primitive $y=c_{1}+c_{2} e^{x}+c_{3} e^{-2 x+c_{4}}$, where $c_{1}, c_{2}, c_{3}, c_{4}$ are arbitrary constants, is
a) 3
b) 4
c) 2
d) None of these
7. The differential equation of all parabolas whose axes are parallel to axis of x, is
a) $\frac{d^{3} y}{d x^{3}}=0$
b) $\frac{d^{3} x}{d y^{3}}=0$
c) $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$
d) $\frac{d^{2} x}{d y^{2}}=0$
8. The solution of the differential equation $\left(x^{2}-y x^{2}\right) \frac{d y}{d x}+y^{2}+x y^{2}=0$ is
a) $\log \left(\frac{x}{y}\right)=\frac{1}{x}+\frac{1}{y}+c$
b) $\log \left(\frac{y}{x}\right)=\frac{1}{x}+\frac{1}{y}+c$
c) $\log (x y)=\frac{1}{x}+\frac{1}{y}+c$
d) $\log (x y)+\frac{1}{x}+\frac{1}{y}=c$
9. The solution of the differential equation $x d y-y d x-\sqrt{x^{2}-y^{2}} d x=0$ is
a) $y-\sqrt{x^{2}+y^{2}}=c x^{2}$
b) $y+\sqrt{x^{2}+y^{2}}=c x^{2}$
c) $y+\sqrt{x^{2}+y^{2}}=c y^{2}$
d) $x-\sqrt{x^{2}+y^{2}}=c y^{2}$
10. Solution of $\frac{d y}{d x}=\frac{x \log x^{2}+x}{\sin y+y \cos y}$ is
a) $y \sin y=x^{2} \log x+c$
b) $y \sin y=x^{2}+c$
c) $y \sin y=x^{2}+\log x$
d) $y \sin y=x \log x+c$
11. If integrating factor of $x\left(1-x^{2}\right) d y+\left(2 x^{2} y-y-a x^{3}\right) d x=0$ is $e^{\int P d x}$, then P is equal to
a) $\frac{2 x^{2}-a x^{3}}{x\left(1-x^{2}\right)}$
b) $2 x^{2}-1$
c) $\frac{2 x^{2}-1}{a x^{3}}$
d) $\frac{2 x^{2}-1}{x\left(1-x^{2}\right)}$
12. The solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}=x^{2}$, is
a) $y=\frac{x^{2}}{4}+C x^{-2}$
b) $y=x^{-1}+C x^{-3}$
c) $y=\frac{x^{3}}{4}+C x^{-1}$
d) $x y=x^{2}+C$
13. The differential equation of all circles passing through the origin and having their centres on the x-axis is
a) $x^{2}=y^{2}+x y \frac{d y}{d x}$
b) $x^{2}=y^{2}+3 x y \frac{d y}{d x}$
c) $y^{2}=x^{2}+2 x y \frac{d y}{d x}$
d) $y^{2}=x^{2}-2 x y \frac{d y}{d x}$
14. If $y^{\prime \prime}-3 y^{\prime}+2 y=0$ where $y(0)=1, y^{\prime}(0)=0$, then the value of y at $x=\log 2$ is
a) 1
b) -1
c) 2
d) 0
15. The differential equation of all straight lines touching the circle $x^{2}+y^{2}=a^{2}$ is
a) $\left(y-\frac{d y}{d x}\right)^{2}=a^{2}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]$
b) $\left(y-x \frac{d y}{d x}\right)^{2}=a^{2}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]$
c) $\left(y-x \frac{d y}{d x}\right)=a^{2}\left[1+\frac{d y}{d x}\right]$
d) $\left(y-\frac{d y}{d x}\right)=a^{2}\left[1-\frac{d y}{d x}\right]$
16. The solution of the differential equation $\left(x^{2}-y x^{2}\right) \frac{d y}{d x}+y^{2}+x y^{2}=0$ is
a) $\log \left(\frac{x}{y}\right)=\frac{1}{x}+\frac{1}{y}+c$
b) $\log \left(\frac{y}{x}\right)=\frac{1}{x}+\frac{1}{y}+c$
c) $\log (x y)=\frac{1}{x}+\frac{1}{y}+c$
d) $\log (x y)+\frac{1}{x}+\frac{1}{y}=c$
17. The equation of the curve satisfying the equation $\left(x y-x^{2}\right) \frac{d y}{d x}=y^{2}$ and passing through the point $(-1,1)$ is
a) $y=(\log y-1) x$
b) $y=(\log y+1) x$
c) $x=(\log x-1) y$
d) $x=(\log x+1) y$
18. $y=2 e^{2 x}-e^{-x}$ is a solution of the differential equation
a) $y_{2}+y_{1}+2 y=0$
b) $y_{2}-y_{1}+2 y=0$
c) $y_{2}+y_{1}=0$
d) $y_{2}-y_{1}-2 y=0$
19. The solution of $y^{\prime}-y=1, y(0)=-1$ is given by $y(x)$, which is equal to
a) $-\exp (x)$
b) $-\exp (-x)$
c) -1
d) $\exp (x)-2$
20. The differential equation of the family of circles with fixed radius 5 unit and centre on the line $y=2$, is
a) $(x-2)^{2} y^{\prime 2}=25-(y-2)^{2}$
b) $(x-2) y^{\prime 2}=25-(y-2)^{2}$
c) $(y-2) y^{\prime 2}=25-(y-2)^{2}$
d) $(y-2)^{2} y^{\prime 2}=25-(y-2)^{2}$

