

CLASS: XIIth DATE:

SUBJECT: MATHS DPP NO.: 1

1. The order and degree of the differential equation
$$\sqrt{y + \frac{d^2y}{dx^2}} = x + \left(\frac{dy}{dx}\right)^{3/2}$$
 are

a) 2,2

b) 2,1

c) 1.2

d)2,3

2. The solution of
$$\frac{dy}{dx} + y = e^x$$
 is

a)
$$2y = e^{2x} + c$$

a)
$$2v = e^{2x} + c$$
 b) $2ve^x = e^2 + c$

c)
$$2ve^{x} = e^{2x} + c$$

d)
$$2ve^{2x} = 2e^x + c$$

3. If
$$\phi(x) = \phi'(x)$$
 and $\phi(1) = 2$, then $\phi(3)$ equals

a) e^2

- b) 2 e^{2}
- c) $3 e^2$

d) 2 e^{3}

4. The general solution of the differential equation
$$\frac{dy}{dx} + \sin\left(\frac{x+y}{2}\right) = \sin\left(\frac{x-y}{2}\right)$$
 is

a) $\log \tan \left(\frac{y}{2}\right) = c - 2 \sin x$

b) $\log \tan \left(\frac{y}{4}\right) = c - 2 \sin \left(\frac{x}{2}\right)$

c) $\log \tan \left(\frac{y}{2} + \frac{\pi}{4}\right) = c - 2 \sin x$

d) $\log \tan \left(\frac{y}{4} + \frac{\pi}{4}\right) = c - 2 \sin \left(\frac{x}{2}\right)$

5. The differential equation of family of curves
$$x^2 + y^2 - 2ax = 0$$
, is

a)
$$x^2 - y^2 - 2xy \ y' = 0$$

a)
$$x^2 - y^2 - 2xy$$
 $y' = 0$ b) $y^2 - x^2 = 2xy$ y' c) $x^2 + y^2 + 2y'' = 0$

c)
$$x^2 + y^2 + 2y'' = 0$$

d) None of these

6. The order of the differential equation whose general solution is given by
$$y = (c_1 + c_2)\cos(x + c_3) - c_4e^{x+c_5}$$
 where c_1,c_2,c_3,c_4,c_5 are arbitrary constants, is

a) 4

b)3

c) 2

d)5

7. The degree of the equation
$$e^x + \sin\left(\frac{dy}{dx}\right) = 3$$
 is

a) 2

b) 0

c) Degree is not defined

d) 1

8. If
$$x = \sin t$$
, $y = \cos pt$, then

a)
$$(1-x^2)y_2 + xy_1 + p^2y = 0$$

b)
$$(1 - x^2)y_2 + xy_1 - p^2y = 0$$

c)
$$(1 + x^2)y_2 - xy_1 + p^2y = 0$$

d)
$$(1-x^2)y_2-xy_1+p^2y=0$$

9. The differential equation representing the family of curves
$$y = xe^{cx}$$
 (c is a constant) is

a)
$$\frac{dy}{dx} = \frac{y}{x} \left(1 - \log \frac{y}{x}\right)$$

b)
$$\frac{dy}{dx} = \frac{y}{x} \log(\frac{y}{x}) + 1$$

a)
$$\frac{dy}{dx} = \frac{y}{x} \left(1 - \log \frac{y}{x} \right)$$
 b) $\frac{dy}{dx} = \frac{y}{x} \log \left(\frac{y}{x} \right) + 1$ c) $\frac{dy}{dx} = \frac{y}{x} \left(1 + \log \frac{y}{x} \right)$ d) $\frac{dy}{dx} + 1 = \frac{y}{x} \log \left(\frac{y}{x} \right)$

$$d)\frac{dy}{dx} + 1 = \frac{y}{x}\log\left(\frac{y}{x}\right)$$

- 10. The degree and order of the differential equation $y = px + \sqrt[3]{a^2p^2 + b^2}$, where $p = \frac{dy}{dx^2}$ are respectively
 - a) 3,1

b) 1,3

c) 1,1

- d)3,3
- 11. The degree of the differential equation $y_3^{2/3} + 2 + 3y_2 + y_1 = 0$, is

b)2

d) None of these

- 12. If $x^2 + y^2 = 1$, then $\left(y' = \frac{dy}{dx}, y'' = \frac{d^2y}{dx^2} \right)$
 - a) $yy'' (2y')^2 + 1 = 0$ b) $yy'' + (y')^2 + 1 = 0$ c) $y'' (y')^2 1 = 0$ d) $y'' + 2(y')^2 + 1 = 0$
- 13. The solution of the differential equation $\frac{dy}{dx} = \frac{x \log x^2 + x}{\sin y + y \cos y}$, is
 - a) $y\sin y = x^2 \log x + C$
 - b) $y\sin y = x^2 + C$
 - c) $y\sin y = x^2 + \log x + C$
 - d) $y\sin y = x\log x + C$
- 14. To reduce the differential equation $\frac{dy}{dx} + P(x) \cdot y = Q(x) \cdot y^n$ to the linear form, the substitution is
 - a) $v = \frac{1}{v^n}$
- b) $v = \frac{1}{v^{n-1}}$ c) $v = y^n$
- d) $v = v^{n-1}$
- 15. The equation of the curve whose subnormal is equal to a constant a is
 - a) y = ax + b
- b) $v^2 = 2ax + 2b$ c) $av^2 x^3 = a$
- d) None of these
- 16. A particle starts at the origin and moves along the x-axis in such a way that its velocity at the point (x,0) is given by the formula $\frac{dx}{dt} = \cos^2 \pi x$. Then, the particle never reaches the point on
 - a) $x = \frac{1}{4}$
- c) $x = \frac{1}{2}$

- 17. The solution of the equation $\frac{dy}{dx} = \frac{x+y}{x-y}$ is
 - a) $c(x^2 + y^2)^{1/2} + e^{\tan^{-1}(y/x)} = 0$
- b) $c(x^2 + y^2)^{1/2} = e^{\tan^{-1}(y/x)}$

c) $c(x^2 - v^2) = e^{\tan^{-1}(y/x)}$

- d) None of the above
- 18. The solution of the equation $\frac{d^2y}{dx^2} = e^{-2x}$ is
 - a) $\frac{e^{-2x}}{4}$

- b) $\frac{e^{-2x}}{4} + cx + d$ c) $\frac{1}{4}e^{-2x} + cx^2 + d$ d) $\frac{1}{4}e^{-2x} + c + d$

- 19. If $x^2 + y^2 = 1$, then
 - a) $vv'' (2v')^2 + 1 = 0$

b) $vv'' + (v')^2 + 1 = 0$

c) $vv'' - (v')^2 - 1 = 0$

d) $vv'' + 2(v')^2 + 1 = 0$

20. The equation of the curve whose slope is $\frac{y-1}{x^2+x}$ and which passes through the point (1, 0) is a) xy+x+y-1=0 b) xy-x-y-1=0 c) (y-1)(x+1)=2x d) y(x+1)-x+1=0

