CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 1

Topic :-DIFFERENTIAL EQUATIONS

1. The order and degree of the differential equation $\sqrt{y+\frac{d^{2} y}{d x^{2}}}=x+\left(\frac{d y}{d x}\right)^{3 / 2}$ are
a) 2,2
b) 2,1
c) 1,2
d) 2,3
2. The solution of $\frac{d y}{d x}+y=e^{x}$ is
a) $2 y=e^{2 x}+c$
b) $2 y e^{x}=e^{2}+c$
c) $2 y e^{x}=e^{2 x}+c$
d) $2 y e^{2 x}=2 e^{x}+c$
3. If $\phi(x)=\phi^{\prime}(x)$ and $\phi(1)=2$, then $\phi(3)$ equals
a) e^{2}
b) $2 e^{2}$
c) $3 e^{2}$
d) $2 e^{3}$
4. The general solution of the differential equation $\frac{d y}{d x}+\sin \left(\frac{x+y}{2}\right)=\sin \left(\frac{x-y}{2}\right)$ is
a) $\log \tan \left(\frac{y}{2}\right)=c-2 \sin x$
b) $\log \tan \left(\frac{y}{4}\right)=c-2 \sin \left(\frac{x}{2}\right)$
c) $\log \tan \left(\frac{y}{2}+\frac{\pi}{4}\right)=c-2 \sin x$
d) $\log \tan \left(\frac{y}{4}+\frac{\pi}{4}\right)=c-2 \sin \left(\frac{x}{2}\right)$
5. The differential equation of family of curves $x^{2}+y^{2}-2 a x=0$, is
a) $x^{2}-y^{2}-2 x y y^{\prime}=0$
b) $y^{2}-x^{2}=2 x y y^{\prime}$
c) $x^{2}+y^{2}+2 y^{\prime \prime}=0$
d) None of these
6. The order of the differential equation whose general solution is given by $y=\left(c_{1}+c_{2}\right)$ $\cos \left(x+c_{3}\right)-c_{4} e^{x+c_{5}}$ where $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ are arbitrary constants, is
a) 4
b) 3
c) 2
d) 5
7. The degree of the equation $e^{x}+\sin \left(\frac{d y}{d x}\right)=3$ is
a) 2
b) 0
c) Degree is not defined
d) 1
8. If $x=\sin t, y=\cos p t$, then
a) $\left(1-x^{2}\right) y_{2}+x y_{1}+p^{2} y=0$
b) $\left(1-x^{2}\right) y_{2}+x y_{1}-p^{2} y=0$
c) $\left(1+x^{2}\right) y_{2}-x y_{1}+p^{2} y=0$
d) $\left(1-x^{2}\right) y_{2}-x y_{1}+p^{2} y=0$
9. The differential equation representing the family of curves $y=x e^{c x}$ (c is a constant) is
a) $\frac{d y}{d x}=\frac{y}{x}\left(1-\log \frac{y}{x}\right)$
b) $\frac{d y}{d x}=\frac{y}{x} \log \left(\frac{y}{x}\right)+1$
c) $\frac{d y}{d x}=\frac{y}{x}\left(1+\log \frac{y}{x}\right)$
d) $\frac{d y}{d x}+1=\frac{y}{x} \log \left(\frac{y}{x}\right)$
10. The degree and order of the differential equation $y=p x+\sqrt[3]{a^{2} p^{2}+b^{2}}$, where $p=\frac{d y}{d x^{\prime}}$, are respectively
a) 3,1
b) 1,3
c) 1,1
d) 3,3
11. The degree of the differential equation $y_{3}^{2 / 3}+2+3 y_{2}+y_{1}=0$, is
a) 1
b) 2
c) 3
d) None of these
12. If $x^{2}+y^{2}=1$, then $\left(y^{\prime}=\frac{d y}{d x}, y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}\right)$
a) $y y^{\prime \prime}-\left(2 y^{\prime}\right)^{2}+1=0$
b) $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}+1=0$
c) $y^{\prime \prime}-\left(y^{\prime}\right)^{2}-1=0$
d) $y^{\prime \prime}+2\left(y^{\prime}\right)^{2}+1=0$
13. The solution of the differential equation $\frac{d y}{d x}=\frac{x \log x^{2}+x}{\sin y+y \cos y^{\prime}}$, is
a) $y \sin y=x^{2} \log x+C$
b) $y \sin y=x^{2}+C$
c) $y \sin y=x^{2}+\log x+C$
d) $y \sin y=x \log x+C$
14. To reduce the differential equation $\frac{d y}{d x}+P(x) \cdot y=Q(x) \cdot y^{n}$ to the linear form, the substitution is
a) $v=\frac{1}{y^{n}}$
b) $v=\frac{1}{y^{n-1}}$
c) $v=y^{n}$
d) $v=y^{n-1}$
15. The equation of the curve whose subnormal is equal to a constant a is
a) $y=a x+b$
b) $y^{2}=2 a x+2 b$
c) $a y^{2}-x^{3}=a$
d) None of these
16. A particle starts at the origin and moves along the x-axis in such a way that its velocity at the point $(x, 0)$ is given by the formula $\frac{d x}{d t}=\cos ^{2} \pi x$. Then, the particle never reaches the point on
a) $x=\frac{1}{4}$
b) $x=\frac{3}{4}$
c) $x=\frac{1}{2}$
d) $x=1$
17. The solution of the equation $\frac{d y}{d x}=\frac{x+y}{x-y}$ is
a) $c\left(x^{2}+y^{2}\right)^{1 / 2}+e^{\tan ^{-1}(y / x)}=0$
b) $c\left(x^{2}+y^{2}\right)^{1 / 2}=e^{\tan ^{-1}(y / x)}$
c) $c\left(x^{2}-y^{2}\right)=e^{\tan ^{-1}(y / x)}$
d) None of the above
18. The solution of the equation $\frac{d^{2} y}{d x^{2}}=e^{-2 x}$ is
a) $\frac{e^{-2 x}}{4}$
b) $\frac{e^{-2 x}}{4}+c x+d$
c) $\frac{1}{4} e^{-2 x}+c x^{2}+d$
d) $\frac{1}{4} e^{-2 x}+c+d$
19. If $x^{2}+y^{2}=1$, then
a) $y y^{\prime \prime}-\left(2 y^{\prime}\right)^{2}+1=0$
b) $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}+1=0$
c) $y y^{\prime \prime}-\left(y^{\prime}\right)^{2}-1=0$
d) $y y^{\prime \prime}+2\left(y^{\prime}\right)^{2}+1=0$
20. The equation of the curve whose slope is $\frac{y-1}{x^{2}+x}$ and which passes through the point $(1,0)$ is
a) $x y+x+y-1=0$
b) $x y-x-y-1=0$
c) $(y-1)(x+1)=2 x$ d) $y(x+1)-x+1=0$

