

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 9

Topic :- CONTINUITY AND DIFFERENTIABILITY

1. For the function $f(x) = \begin{cases} \frac{x^3 - a^3}{x - a}, & x \neq a \\ b, & x = a \end{cases}$, if f(x) is continuous at x = a, then *b* is equal to a) a^2 b) $2a^2$ c) $3a^2$ d) $4a^2$

- 2. If $y = f(x) = \frac{1}{u^2 + u 1}$ where $u = \frac{1}{x 1}$, then the function is discontinuous at x = a) 1 b) 1/2 c) 2 d) -2
- 3. If $f(x) = Min \{\tan x, \cot x\}$, then a) f(x) is not differentiable at $x = 0, \pi/4, 5\pi/4$ b) f(x) is continuous at $x = 0, \pi/2, 3\pi/2$ c) $\int_0^{\pi/2} f(x) dx = \ln \sqrt{2}$ d) f(x) is periodic with period $\frac{\pi}{2}$
- 4. If $f(x) = \{|x| |x 1\}^2$, then f'(x) equals a) 0 for all x b) $2\{|x| - |x - 1|\}$ c) $\begin{cases} 0 \text{ for } x < 0 \text{ and for } x > 1 \\ 4(2x - 1)\text{ for } 0 < x < 1 \end{cases}$ d) $\begin{cases} 0 \text{ for } x < 0 \\ 4(2x - 1)\text{ for } x > 0 \end{cases}$
- 5. If $f(x) = (x x_0)\phi(x)$ and $\phi(x)$ is continuous at $x = x_0$, then $f'(x_0)$ is equal to a) $\phi'(x_0)$ b) $\phi(x_0)$ c) $x_0\phi(x_0)$ d) None of these

6. The function defined by

$$f(x) = \begin{cases} \left(x^2 + e^{\frac{1}{2-x}}\right)^{-1} & x \neq 2 \\ k, & x = 2 \end{cases}$$
is continuous from right at the point $x = 2$, then k is equal to
 $k, & x = 2$
a) 0
b) $\frac{1}{4}$
c) $-\frac{1}{2}$
d) None of these

7. If
$$f(x) = \begin{cases} \frac{1 - \sin x}{(\pi - 2x)^2} \cdot \frac{\log \sin x}{(\log 1 + \pi^2 - 4\pi x + x^2)}, & x \neq \frac{\pi}{2} \\ k, & x = \frac{\pi}{2} \end{cases}$$
 is continuous at $x = \pi/2$, then $k = \frac{\pi}{2}$
a) $-\frac{1}{16}$ b) $-\frac{1}{32}$ c) $-\frac{1}{64}$ d) $-\frac{1}{28}$

8. If
$$f(x) = \begin{cases} \frac{\sin 5x}{x^2 + 2x}, & x \neq 0\\ k + \frac{1}{2}, & x = 0 \end{cases}$$
 is continuous at $x = 0$, then the value of k is

a) 1 b) -2 c) 2 d)
$$\frac{1}{2}$$

9. Let $f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Then, f(x) is continuous but not differentiable at x = 0, if

a)
$$n \in (0, 1]$$
 b) $n \in [1, \infty)$ c) $n \in (-\infty, 0)$ d) $n = 0$

- 10. The function $f(x) = \begin{cases} |x-3|, & \text{if } x \ge 1\\ \frac{x^2}{4} \frac{3x}{2} + \frac{13}{4}, & \text{if } x < 1 \end{cases}$
 - a) Continuous and differentiable at x = 3
 - b) Continuous at x = 3, but not differentiable at x = 3
 - c) continuous and differentiable everywhere
 - d) continuous at x = 1, but not differentiable at x = 1
- 11. Let f(x) = |x| and g(x) = |x³|, then
 a) f(x) and g(x) Both are continuous at x = 0
 b) f(x) and g(x) Both are differentiable at x = 0
 c) f(x) is differentiable but g(x) is not differentiable at x = 0
 d) f(x) and g(x) Both are not differentiable at x = 0

12. If
$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x}, & x < 0\\ c, & x = 0\\ \frac{\sqrt{x+bx^2 - \sqrt{x}}}{bx\sqrt{x}}, & x > 0 \end{cases}$$
 is continuous at $x = 0$, then
a) $a = -\frac{3}{2}, b = 0, c = \frac{1}{2}$
b) $a = -\frac{3}{2}, b = 1, c = -\frac{1}{2}$
c) $a = -\frac{3}{2}, b \in R - \{0\}, c = \frac{1}{2}$
d) None of these

13. If
$$f(x) = \begin{cases} \frac{36^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
 is continuous at $x = 0$, then k equals
a) $16\sqrt{2}\log 2\log 3$ b) $16\sqrt{2}\ln 6$ c) $16\sqrt{2}\ln 2\ln 3$ d) None of these

14. Let [] denotes the greatest integer function $\operatorname{and} f(x) = [\tan^2 x]$. Then,a) $\lim_{x \to 0} f(x)$ does not existb) f(x) is continuous at x = 0c) f(x) is not differentiable at x = 0d) f(x) = 1

15. Let a function $f:R \rightarrow R$, where R is the set of real numbers satisfying the equation f(x + y) = f(x) + f(y), $\forall x, y$ if f(x) is continuous at x = 0, then a) f(x) is discontinuous, $\forall x \in R$ b) f(x) is continuous, $\forall x \in R$ c) f(x) is continuous for $x \in \{1, 2, 3, 4\}$ d) None of the above

PRERNA EDUCATION

16.	6. Let $f(x) = \begin{cases} \sin x, \text{ for } x \ge 0\\ 1 - \cos x, \text{ for } x \le 0 \end{cases}$ and $g(x) = e^x$. Then, $(gof)'(0)$ is			
	a) 1	b)-1	c) 0	d)None of these
17.	The function $f(x) \begin{cases} (x + 0, x) \\ 0, x \end{cases}$	(+1) ^{2-($\frac{1}{ x }+\frac{1}{x}$), $x \neq 0$ is x = 0}		
	a) Continuous everywhere			
	b) Discontinuous at only one point			
	c) Discontinuous at exactly two points			
	d) None of these			
18.	If $f(x) = \begin{cases} \frac{\log(1 + ax) - \log(1 - bx)}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ and $f(x)$ is continuous at $x = 0$, then the value of k is			
	a) <i>a</i> – <i>b</i>	b) <i>a</i> + <i>b</i>	c) $\log a + \log b$	d)None of these
19.	The value of $f(0)$, so that the function $f(x) = \frac{(27 - 2x)^{1/3} - 3}{9 - 3(243 + 5x)^{1/5}} (x \neq 0)$ is continuous is given by			
	a) $\frac{2}{3}$	b)6	c) 2	d)4
20. The function $f:R/\{0\} \rightarrow R$ given by $f(x) = \frac{1}{x} - \frac{2}{e^{2x} - 1}$				
Can	a) 2	b)-1 (0) a children b)	c) 0	d)1
	,			,