CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 9

Topic :- CONTINUITY AND DIFFERENTIABILITY

1. For the function $f(x)=\left\{\begin{array}{ll}\frac{x^{3}-a^{3}}{x-a}, & x \neq a \\ b, & x=a\end{array}\right.$, if $f(x)$ is continuous at $x=a$, then b is equal to
a) a^{2}
b) $2 a^{2}$
c) $3 a^{2}$
d) $4 a^{2}$
2. If $y=f(x)=\frac{1}{u^{2}+u-1}$ where $u=\frac{1}{x-1}$, then the function is discontinuous at $x=$
a) 1
b) $1 / 2$
c) 2
d) -2
3. If $f(x)=\operatorname{Min}\{\tan x, \cot x\}$, then
a) $f(x)$ is not differentiable at $x=0, \pi / 4,5 \pi / 4$
b) $f(x)$ is continuous at $x=0, \pi / 2,3 \pi / 2$
c) $\int_{0}^{\pi / 2} f(x) d x=\ln \sqrt{2}$
d) $f(x)$ is periodic with period $\frac{\pi}{2}$
4. If $f(x)=\{|x|-\mid x-1\}^{2}$, then $f^{\prime}(x)$ equals
a) 0 for all x
b) $2\{|x|-|x-1|\}$
c) $\left\{\begin{array}{l}0 \text { for } x<0 \text { and for } x>1 \\ 4(2 x-1) \text { for } 0<x<1\end{array}\right.$
d) $\left\{\begin{array}{c}0 \text { for } x<0 \\ 4(2 x-1) \text { for } x>0\end{array}\right.$
5. If $f(x)=\left(x-x_{0}\right) \phi(x)$ and $\phi(x)$ is continuous at $x=x_{0}$, then $f^{\prime}\left(x_{0}\right)$ is equal to
a) $\phi^{\prime}\left(x_{0}\right)$
b) $\phi\left(x_{0}\right)$
c) $x_{0} \phi\left(x_{0}\right)$
d) None of these
6. The function defined by
$f(x)=\left\{\begin{array}{c}\left(x^{2}+e^{\frac{1}{2-x}}\right)^{-1} x \neq 2 \\ k, \quad x=2\end{array}\right.$ is continuous from right at the point $x=2$, then k is equal to
a) 0
b) $\frac{1}{4}$
c) $-\frac{1}{2}$
d) None of these
7. If $f(x)=\left\{\begin{array}{c}\frac{1-\sin x}{(\pi-2 x)^{2}} \cdot \frac{\log \sin x}{\left(\log 1+\pi^{2}-4 \pi x+x^{2}\right)} \\ k, x=\frac{\pi}{2}\end{array}, x \neq \frac{\pi}{2}\right.$ is continuous at $x=\pi / 2$, then $k=$
a) $-\frac{1}{16}$
b) $-\frac{1}{32}$
c) $-\frac{1}{64}$
d) $-\frac{1}{28}$
8. If $f(x)=\left\{\begin{array}{cc}\frac{\sin 5 x}{x^{2}+2 x}, & x \neq 0 \\ k+\frac{1}{2}, & x=0\end{array}\right.$ is continuous at $x=0$, then the value of k is
a) 1
b) -2
c) 2
d) $\frac{1}{2}$
9. Let $f(x)=\left\{\begin{array}{c}x^{n} \sin \frac{1}{x}, x \neq 0 \\ 0, x=0\end{array}\right.$. Then, $f(x)$ is continuous but not differentiable at $x=0$, if
a) $n \in(0,1]$
b) $n \in[1, \infty)$
c) $n \in(-\infty, 0)$
d) $n=0$
10. The function $f(x)=\left\{\begin{array}{ll}|x-3|, & \text { if } x \geq 1 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}, & \text { if } x<1\end{array}\right.$ is
a) Continuous and differentiable at $x=3$
b) Continuous at $x=3$, but not differentiable at $x=3$
c) continuous and differentiable everywhere
d) continuous at $x=1$, but not differentiable at $x=1$
11. Let $f(x)=|x|$ and $g(x)=\left|x^{3}\right|$, then
a) $f(x)$ and $g(x)$ Both are continuous at $x=0$
b) $f(x)$ and $g(x)$ Both are differentiable at $x=0$
c) $f(x)$ is differentiable but $g(x)$ is not differentiable at $x=0$
d) $f(x)$ and $g(x)$ Both are not differentiable at $x=0$
12. If $f(x)=\left\{\begin{array}{l}\frac{\sin (a+1) x+\sin x}{x}, x<0 \\ \frac{c,}{\sqrt{x+b x^{2}}-\sqrt{x}} \frac{b x \sqrt{x}}{\sqrt{x}}, x>0\end{array}\right.$ is continuous at $x=0$, then
a) $a=-\frac{3}{2}, b=0, c=\frac{1}{2}$
b) $a=-\frac{3}{2}, b=1, c=-\frac{1}{2}$
c) $a=-\frac{3}{2}, b \in R-\{0\}, c=\frac{1}{2}$
d) None of these
13. If $f(x)=\left\{\begin{array}{c}\frac{36^{x}-9^{x}-4^{x}+1}{\sqrt{2}-\sqrt{1+\cos x}}, x \neq 0 \\ k, x=0\end{array}\right.$ is continuous at $x=0$, then k equals
a) $16 \sqrt{2} \log 2 \log 3$
b) $16 \sqrt{2} \ln 6$
c) $16 \sqrt{2} \ln 2 \ln 3$
d) None of these
14. Let [] denotes the greatest integer function and $f(x)=\left[\tan ^{2} x\right]$. Then,
a) $\lim _{x \rightarrow 0} f(x)$ does not exist
b) $f(x)$ is continuous at $x=0$
c) $f(x)$ is not differentiable at $x=0$
d) $f(x)=1$
15. Let a function $f: R \rightarrow R$, where R is the set of real numbers satisfying the equation $f(x+y)=f$ $(x)+f(y), \forall x, y$ if $f(x)$ is continuous at $x=0$, then
a) $f(x)$ is discontinuous, $\forall x \in R$
b) $f(x)$ is continuous, $\forall x \in R$
c) $f(x)$ is continuous for $x \in\{1,2,3,4\}$
d) None of the above
16. Let $f(x)=\left\{\begin{array}{c}\sin x \text {, for } x \geq 0 \\ 1-\cos x \text {, for } x \leq 0\end{array}\right.$ and $g(x)=e^{x}$. Then, $(g \circ f)^{\prime}(0)$ is
a) 1
b) -1
c) 0
d) None of these
17. The function $f(x)\left\{\begin{array}{ll}(x+1)^{2-\left(\frac{1}{|x|}+\frac{1}{x}\right)}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ is
a) Continuous everywhere
b) Discontinuous at only one point
c) Discontinuous at exactly two points
d) None of these
18. If $f(x)=\left\{\begin{array}{l}\frac{\log (1+a x)-\log (1-b x)}{x}, x \neq 0 \\ k, x=0\end{array}\right.$ and $f(x)$ is continuous at $x=0$, then the value of k is
a) $a-b$
b) $a+b$
c) $\log a+\log b$
d) None of these
19. The value of $f(0)$, so that the function $f(x)=\frac{(27-2 x)^{1 / 3}-3}{9-3(243+5 x)^{1 / 5}}(x \neq 0)$ is continuous is given by
a) $\frac{2}{3}$
b) 6
c) 2
d) 4
20. The function $f: R /\{0\} \rightarrow R$ given by
$f(x)=\frac{1}{x}-\frac{2}{e^{2 x}-1}$
Can be made continuous at $x=0$ by defining $f(0)$ as function
a) 2
b) -1
c) 0
d) 1
