

CLASS : XIIth DATE : **SUBJECT : MATHS DPP NO. :8** 

## **Topic :-** CONTINUITY AND DIFFERENTIABILITY

1. If 
$$f(x) = \begin{cases} (x-2)^2 \sin\left(\frac{1}{x-2}\right) - |x-1|, x \neq 2\\ -1, x = 2 \end{cases}$$
 then the set of points where  $f(x)$  is differentiable is

a) 
$$R$$
 b)  $R - \{1, 2\}$  c)  $R - \{1\}$  d)  $R - \{2\}$ 

- 2. The value of *f* at x = 0 so that function  $f(x) = \frac{2^x 2^{-x}}{x}$ ,  $x \neq 0$  is continuous at x = 0, is a) 0 b) log 2 c) 4 d) log 4
- 3. If  $f(x) = |\log_e x|$ , then a)  $f'(1^+) = 1$ ,  $f'(1^-) = -1$ b)  $f'(1^-) = -1$ ,  $f'(1^+) = 0$ c) f'(1) = 1,  $f'(1^-) = 0$ d) f'(1) = -1,  $f'(1^+) = -1$

4. Let f(x) be a function such that f(x + y) = f(x) + f(y) and  $f(x) = \sin xg(x)$  for all  $x, y \in R$ . If g(x) is a continuous function such that g(0) = k, then f'(x) is equal to a) k b) kx c) kg(x) d) None of these

- 5. The function f(x) = |x| + |x 1|, is
  a) Continuous at x = 1, but not differentiable
  b) Both continuous and differentiable at x = 1
  c) Not continuous at x = 1
  - d) None of these

6. The set of points of differentiability of the function  $f(x) = \begin{cases} \frac{\sqrt{x+1}-1}{x}, \text{ for } x \neq 0\\ 0, \text{ for } x = 0 \end{cases}$  is

a) 
$$R$$
 b)  $[0, \infty]$  c)  $(-\infty, 0)$  d)  $R - \{0\}$ 

7. Given that f(x) is a differentiable function of x and that f(x). f(y) = f(x) + f(y) + f(xy) - 2and that f(2) = 5. Then, f(3) is equal to a) 10 b) 24 c) 15 d) None of these

8. If  $f(x) = \frac{1}{2}x - 1$ , then on the interval  $[0, \pi]$ , a)  $\tan[f(x)]$  and  $\frac{1}{f(x)}$  are both continuous b)  $\tan[f(x)]$  and  $\frac{1}{f(x)}$  are both discontinuous c)  $\tan[f(x)]$  and  $f^{-1}(x)$  are both continuous d)  $\tan[f(x)]$  s continuous but  $\frac{1}{f(x)}$  is not

9. If 
$$f(x) = (x + 1)^{\cot x}$$
 be continuous at  $= 0$ , then  $f(0)$  is equal to  
a) 0 b)  $-e$  c)  $e$  d) None of these

10. Let  $f(x) = \begin{cases} \frac{\tan x - \cot x}{x - \frac{\pi}{4}}, & x \neq \frac{\pi}{4} \\ a, & x = \frac{\pi}{4} \end{cases}$  the value of *a* so that f(x) is continuous at  $x = \frac{\pi}{4}$  is a) 2 b) 4 c) 3 d) 1

11. If 
$$f(x) = \int_{-1}^{x} |t| dt, x \ge -1$$
, then  
a)  $f$  and  $f'$  are continuous for  $x + 1 > 0$   
b)  $f$  is continuous but  $f'$  is not so for  $x + 1 > 0$   
c)  $f$  and  $f'$  are continuous at  $x = 0$   
d)  $f$  is continuous at  $x = 0$  but  $f'$  is not so  
12. The set of points of discontinuity of the function  
 $f(x) = \lim_{n \to \infty} \frac{x^{-n} - x^n}{x^{-n} + x^n}, n \in Z$  is  
a) {1} b) {-1} c) {-1, 1} d) None of these  
13. The number of points of discontinuity of the function  
 $f(x) = \frac{1}{\log|x|}$ , is  
a) 4 b) 3 c) 2 d) 1  
14.  $f(x) = \begin{cases} \frac{\sin 3x}{\sin x}, & x \neq 0 \\ k, & x = 0 \end{cases}$  is continuous, if  $k$  is  
a) 3 b) 0 c) -3 d) -1  
15. For the function  $f(x) = \frac{\log_6(1 + x) + \log_6(1 - x)}{x}$  to be continuous at  $= 0$ , the value of  $f(0)$  is  
a) -1 b) 0 c) -2 d) 2  
16. Let  $f(x) = \begin{cases} \frac{x-4}{1x-41} + a, x < 4 \\ \frac{x-4}{1x-41} + b, x > 4 \\ \frac{x-4}{1x-41} + b, x > 4 \end{cases}$   
Then,  $f(x)$  is continuous at  $x = 4$ , when  
a)  $a = 0, b = 0$  b)  $a = 1, b = 1$  c)  $a = -1, b = 1$  d)  $a = 1, b = -1$   
17. If  $f(x) \begin{cases} \frac{|x|-1}{x}, & x \neq 1 \\ 0, & x = 1 \end{cases}$  then at  $x = 1, f(x)$  is  
a) Continuous and differentiable

a) Continuous and differentiable

b) Differentiable but not continuous

c) Continuous but not differentiable

d) Neither continuous nor differentiable

18. If 
$$f(x) = \begin{cases} \frac{1 - \sqrt{2} \sin x}{\pi - 4x}, & \text{if } x \neq \frac{\pi}{4} \\ a, & \text{if } x = \frac{\pi}{4} \end{cases}$$
 is continuous at  $\frac{\pi}{4}$ , then *a* is equal to  
a) 4 b) 2 c) 1 d) 1/4

19. If the function  $f: R \to R$  given by  $f(x) = \begin{cases} x + a, \text{ if } x \le 1\\ 3 - x^2, \text{ if } x > 1 \end{cases}$  is continuous at x = 1, thyen a is equal to

20. If 
$$f:R \to R$$
 is defined by  

$$f(x) = \begin{cases} \frac{\cos 3x - \cos x}{x^2}, & \text{for } x \neq 0 \\ \lambda, & \text{for } x = 0 \end{cases}$$
 and if *f* is continuous at  $x = 0$ , then  $\lambda$  is equal to  
a) -2 b) -4 c) -6 d) -8

