CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. :8

Topic :- Continuty and differentiability

1. If $f(x)=\left\{\begin{array}{cc}(x-2)^{2} \sin \left(\frac{1}{x-2}\right)-|x-1|, x \neq 2 \\ -1, & x=2\end{array}\right.$ then the set of points where $f(x)$ is differentiable, is
a) R
b) $R-\{1,2\}$
c) $R-\{1\}$
d) $R-\{2\}$
2. The value of f at $x=0$ so that function $f(x)=\frac{2^{x}-2^{-x}}{x}, x \neq 0$ is continuous at $x=0$, is
a) 0
b) $\log 2$
c) 4
d) $\log 4$
3. If $f(x)=\left|\log _{e} x\right|$, then
a) $f^{\prime}\left(1^{+}\right)=1, f^{\prime}\left(1^{-}\right)=-1$
b) $f^{\prime}\left(1^{-}\right)=-1, f^{\prime}\left(1^{+}\right)=0$
c) $f^{\prime}(1)=1, f^{\prime}\left(1^{-}\right)=0$
d) $f^{\prime}(1)=-1, f^{\prime}\left(1^{+}\right)=-1$
4. Let $f(x)$ be a function such that $f(x+y)=f(x)+f(y)$ and $f(x)=\sin x g(x)$ for all $x, y \in R$. If $g(x)$ is a continuous function such that $g(0)=k$, then $f^{\prime}(x)$ is equal to
a) k
b) $k x$
c) $k g(x)$
d) None of these
5. The function $f(x)=|x|+|x-1|$, is
a) Continuous at $x=1$, but not differentiable
b) Both continuous and differentiable at $x=1$
c) Not continuous at $x=1$
d) None of these
6. The set of points of differentiability of the function $f(x)=\left\{\begin{array}{c}\frac{\sqrt{x+1}-1}{x} \text {, for } x \neq 0 \\ 0, \text { for } x=0\end{array}\right.$ is
a) R
b) $[0, \infty]$
c) $(-\infty, 0)$
d) $R-\{0\}$
7. Given that $f(x)$ is a differentiable function of x and that $f(x) . f(y)=f(x)+f(y)+f(x y)-2$ and that $f(2)=5$. Then, $f(3)$ is equal to
a) 10
b) 24
c) 15
d) None of these
8. If $f(x)=\frac{1}{2} x-1$, then on the interval $[0, \pi]$,
a) $\tan [f(x)]$ and $\frac{1}{f(x)}$ are both continuous
b) $\tan [f(x)]$ and $\frac{1}{f(x)}$ are both discontinuous
c) $\tan [f(x)]$ and $f^{-1}(x)$ are both continuous
d) $\tan [f(x)] \mathrm{s}$ continuous but $\frac{1}{f(x)}$ is not
9. If $f(x)=(x+1)^{\cot x}$ be continuous at $=0$, then $f(0)$ is equal to
a) 0
b) $-e$
c) e
d) None of these
10. Let $f(x)=\left\{\begin{array}{ll}\frac{\tan x-\cot x}{x-\frac{\pi}{4}}, & x \neq \frac{\pi}{4} \\ a, & x=\frac{\pi}{4}\end{array}\right.$ the value of a so that $f(x)$ is continuous at $x=\frac{\pi}{4}$ is
a) 2
b) 4
c) 3
d) 1
11. If $f(x)=\int_{-1}^{x}|t| d t, x \geq-1$, then
a) f and f^{\prime} are continuous for $x+1>0$
b) f is continuous but f^{\prime} is not so for $x+1>0$
c) f and f^{\prime} are continuous at $x=0$
d) f is continuous at $x=0$ but f^{\prime} is not so
12. The set of points of discontinuity of the function
$f(x)=\lim _{n \rightarrow \infty} \frac{x^{-n}-x^{n}}{x^{-n}+x^{n}}, n \in Z$ is
a) $\{1\}$
b) $\{-1\}$
c) $\{-1,1\}$
d) None of these
13. The number of points of discontinuity of the function
$f(x)=\frac{1}{\log |x|}$, is
a) 4
b) 3
c) 2
d) 1
14. $f(x)=\left\{\begin{array}{ll}\frac{\sin 3 x}{\sin x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous, if k is
a) 3
b) 0
c) -3
d) -1
15. For the function $f(x)=\frac{\log _{e}(1+x)+\log _{e}(1-x)}{x}$ to be continuous at $=0$, the value of $f(0)$ is
a) -1
b) 0
c) -2
d) 2
16. Let $f(x)=\left\{\begin{array}{l}\frac{x-4}{|x-4|}+a, x<4 \\ a+b, \quad x=4 \\ \frac{x-4}{|x-4|}+b, \quad x>4\end{array}\right.$

Then, $f(x)$ is continuous at $x=4$, when
a) $a=0, b=0$
b) $a=1, b=1$
c) $a=-1, b=1$
d) $a=1, b=-1$
17. If $f(x)\left\{\begin{array}{ll}\frac{[x]-1}{x-1}, & x \neq 1 \\ 0, & x=1\end{array}\right.$ then at $x=1, f(x)$ is
a) Continuous and differentiable
b) Differentiable but not continuous
c) Continuous but not differentiable
d) Neither continuous nor differentiable
18. If $f(x)=\left\{\begin{array}{c}\frac{1-\sqrt{2} \sin x}{\pi-4 x} \text {, if } x \neq \frac{\pi}{4} \\ a, \text { if } x=\frac{\pi}{4}\end{array}\right.$ is continuous at $\frac{\pi}{4}$, then a is equal to
a) 4
b) 2
c) 1
d) $1 / 4$
19. If the function $f: R \rightarrow R$ given by $f(x)=\left\{\begin{array}{l}x+a, \text { if } x \leq 1 \\ 3-x^{2}, \text { if } x>1\end{array}\right.$ is continuous at $x=1$, thyen a is equal to
a) 4
b) 3
c) 2
d) 1
20. If $f: R \rightarrow R$ is defined by
$f(x)=\left\{\begin{array}{cc}\frac{\cos 3 x-\cos x}{x^{2}}, & \text { for } x \neq 0 \\ \lambda, & \text { for } x=0\end{array}\right.$ and if f is continuous at $x=0$, then λ is equal to
a) -2
b) -4
c) -6
d) -8

