CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 7

Topic :- CONTINUTY AND DIFFERENTIABILITY

1. The function $f(x)=e^{-|x|}$ is
a) Continuous everywhere but not differentiable at $x=0$ b) Continuous and differentiable everywhere
c) Not continuous at $x=0$
d) None of the above
2. The value of $f(0)$, so that the function
$f(x)=\frac{\sqrt{a^{2}-a x+x^{2}}-\sqrt{a^{2}+a x+x^{2}}}{\sqrt{a+x}-\sqrt{a-x}}$
Becomes continuous for all x, is given by
a) $a^{3 / 2}$
b) $a^{1 / 2}$
c) $-a^{1 / 2}$
d) $-a^{3 / 2}$
3. The value of k for which the function
$f(x)=\left\{\begin{array}{c}\frac{1-\cos 4 x}{8 x^{2}}, x \neq 0 \\ k\end{array} \quad x=0 \quad\right.$ is continuous at $a=0$, is
a) $k=0$
b) $k=1$
c) $k=-1$
d) None of these
4. The number of points at which the function $f(x)=(|x-1|+|x-2|+\cos x)$ where $x \in[0,4]$ is not continuous, is
a) 1
b) 2
c) 3
d) 0
5. If $f(x)=\left\{\begin{array}{ll}x \sin \frac{1}{x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $x=0$, then the value of k is
a) 1
b) -1
c) 0
d) 2
6. Let $f(x)$ be twice differentiable function such that $f^{\prime \prime}(x)=-f(x)$ and $f^{\prime}(x)=g(x), h(x)=$ $\{f(x)\}^{2}+\{g(x)\}^{2}$. If $h(5)=11$, then $h(10)$ is equal to
a) 22
b) 11
c) 0
d) None of these
7. if $f(x)=|x|^{3}$, then $f^{\prime}(0)$ equals
a) 0
b) $1 / 2$
c) -1
d) $-1 / 2$
8. Let function $f(x)=\sin ^{-1}(\cos x)$, is
a) Discontinuous at $x=0$
b) Continuous at $x=0$
c) Differentiable at $x=0$
d) None of these
9. Let $f(x)=\left\{\begin{array}{c}\frac{x^{4}-5 x^{2}+4}{(x-1)(x-2) \mid}, x \neq 1,2 \\ 6, x=10 \\ 12, \quad x=2\end{array}\right.$ Then, $f(x)$ is continuous on the set
a) R
b) $R-\{1\}$
c) $R-\{2\}$
d) $R-\{1,2\}$
10. The set of points, where $f(x)=\frac{x}{1+|x|}$ is differentiable, is
a) $(-\infty,-1) \cup(-1, \infty)$ b)
$(-\infty, \infty)$
c) $(0, \infty)$
d) $(-\infty, 0) \cup(0, \infty)$
11. Given $f(0)=0$ and $f(x)=\frac{1}{\left(1-e^{-1 / x}\right)}$ for $x \neq 0$. Then only one of the follo 0 wing statements on $f($ x) is true. That id $f(x)$, is
a) Continuous at $x=0$
b) Not continuous at $x=0$
c) Both continuous and differentiable at $x=0$
d) Not defined at $x=0$
12. Let f and g be differentiable functions satisfying $g^{\prime}(a)=2, g(a)=b$ and $f o g=I$ (identify function). Then, $f^{\prime}(b)$ is equal to
a) $1 / 2$
b) 2
c) $2 / 3$
d) None of these
13. Let $f(x)=\left\{\begin{array}{cc}\frac{\sin \pi x}{5 x}, & x \neq 0 \\ k, & x=0\end{array}\right.$, if $f(x)$ is continuous at $x=0$, then k is equal to
a) $\frac{\pi}{5}$
b) $\frac{5}{\pi}$
c) 1
d) 0
14. The number of discontinuities of the greatest integer function $f(x)=[x], x \in\left(-\frac{7}{2}, 100\right)$ is equal to
a) 104
b) 100
c) 102
d) 103
15. For the function $f(x)=\frac{e^{1 / x}-1}{e^{1 / x}+1}, x=0$, which of the following is correct?
a) $\lim _{x \rightarrow 0} f(x)$ does not exist
b) $\lim _{x \rightarrow 0} f(x)=1$
c) $\lim _{x \rightarrow 0} f(x)$ exists but $f(x)$ is not continuous at $x=0$
d) $f(x)$ is continuous at $x=0$
16. If $f(x)=x^{4}+\frac{x^{4}}{1+x^{4}}+\frac{x^{4}}{\left(1+x^{4}\right)^{2}}+\ldots$ to ∞ then at $x=0, f(x)$ is
a) Continuous but not differentiable
b) Differentiable
c) Continuous
17. If $f(x)=\left\{\begin{array}{l}1+x, 0 \leq x \leq 2 \\ 3-x, 2<x \leq 3\end{array}\right.$ then the set of points of discontinuity of $g(x)=f \circ f(x)$, is
a) $\{1,2\}$
b) $\{0,1,2\}$
c) $\{0,1\}$
d) None of these
18. Let $g(x)$ be the inverse of an invertible function $f(x)$ which is differentiable at $x=c$, then g^{\prime} $(f(c))$ equals
a) $f^{\prime}(c)$
b) $\frac{1}{f^{\prime}(c)}$
c) $f(c)$
d) None of these
19. If $f(x)=\left\{\begin{array}{c}x^{p} \cos \left(\frac{1}{x}\right), x \neq 0 \\ 0, \quad x=0\end{array}\right.$ is differentiable at $x=0$, then
a) $p<0$
b) $0<p<1$
c) $p=1$
d) $p>1$
20. At $x=0$, the function $f(x)=|x|$ is
a) Continuous but not differentiable
b) Discontinuous and differentiable
c) Discontinuous and not differentiable
d) Continuous and differentiable

