CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :- CONTINUTY AND DIFFERENTIABILITY

1. $f(x)=|x-3|$ is ... at $x=3$
a) Continuous and not differentiable
b) Continuous and differentiable
c) Discontinuous and not differentiable
d) Discontinuous and differentiable
2. At $x=\frac{3}{2}$ the function $f(x)=\frac{|2 x-3|}{2 x-3}$ is
a) Continuous
b) Discontinuous
c) Differentiable
d) Non-zero
3. The following functions are differentiable on $(-1,2)$
a) $\int_{x}^{2 x}(\log t)^{2} d t$
b) $\int_{x}^{2 x} \frac{\sin t}{t} d t$
c) $\int_{x}^{2 x} \frac{1-t+t^{2}}{1+t+t^{2}} d t$
d) None of these
4. Let $f(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{\pi}{2}\right]$. If $f(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is
a) 1
b) $1 / 2$
c) $-1 / 2$
d) -1
5. If $f(x)=\left\{\begin{array}{c}\frac{1-\cos x}{x}, x \neq 0 \\ k, \quad x=0\end{array}\right.$ is continuous at $x=0$, then the value of k is
a) 0
b) $\frac{1}{2}$
c) $\frac{1}{4}$
d) $-\frac{1}{2}$
6. Let $f(x)=|x|+|x-1|$, then
a) $f(x)$ is continuous at $x=0$, as well as at $x=1$
b) $f(x)$ is continuous at $x=0$, but not at $x=1$
c) $f(x)$ is continuous at $x=1$, but not at $x=0$
d) None of these
7. The function $f(x)$ is defined as $f(x)=\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$, if $x \neq 0$. The value of f to be assigned at $x=0$ so that the function is continuous there, is
a) $-\frac{1}{3}$
b) 1
c) $\frac{2}{3}$
d) $\frac{1}{3}$
8. Let $f(x)$ be an odd function. Then $f^{\prime}(x)$
a) Is an even function
b) Is an odd function
c) May be even or odd
d) None of these
9. If $f(x)=\left\{\begin{array}{c}\frac{x-1}{2 x^{2}-7 x+5}, \text { for } x \neq 1 \\ -\frac{1}{3}, \text { for } x=1\end{array}\right.$, then $f^{\prime}(1)$ is equal to
a) $-\frac{1}{9}$
b) $-\frac{2}{9}$
c) -13
d) $1 / 3$
10. If $f: R \rightarrow R$ given by
$f(x)=\left\{\begin{array}{c}2 \cos x, \text { if } x \leq-\frac{\pi}{2} \\ a+\sin x+b, \text { if }-\frac{\pi}{2}<x<\frac{\pi}{2} \text { is a continuous } \\ 1+\cos ^{2} x, \text { if } x \geq \frac{\pi}{2}\end{array}\right.$
Function on R, then (a, b) is equal to
a) $(1 / 2,1 / 2)$
b) $(0,-1)$
c) $(0,2)$
d) $(1,0)$
11. If $f(x+y)=f(x) f(y)$ for all $x, y \in R, f(5)=2, f^{\prime}(0)=3$. Then $f^{\prime}(5)$ equals
a) 6
b) 3
c) 5
d) None of these
12. Let $f(x)$ be a function satisfying $f(x+y)=f(x)+f(y)$ and $f(x)=x g(x)$ for all $x, y \in R$, where $g(x)$ is continuous. Then,
a) $f^{\prime}(x)=g^{\prime}(x)$
b) $f^{\prime}(x)=g(x)$
c) $f^{\prime}(x)=g(0)$
d) None of these
13. If $f(x)=\sqrt{x+2 \sqrt{2 x-4}}+\sqrt{x-2 \sqrt{2 x-4}}$, then $f(x)$ is differentiable on
a) $(-\infty, \infty)$
b) $[2, \infty)-\{4\}$
c) $[2, \infty)$
d) None of these
14. If $f(x)=\left\{\begin{array}{c}x^{2} \sin \left(\frac{1}{x}\right), x \neq 0 \\ 0, x=0\end{array}\right.$, then
a) f and f^{\prime} are continuous at $x=0$
b) f is derivable at $x=0$ and f^{\prime} is continuous at $x=0$
c) f is derivable at $x=0$ and f^{\prime} is not continuous at $x=0$
d) f^{\prime} is derivable at $x=0$
15. If a function $f(x)$ is defined as $f(x)=\left\{\begin{array}{c}\frac{x}{\sqrt{x^{2}}}, x \neq 0 \\ 0, x=0\end{array}\right.$ then
a) $f(x)$ is continuous at $x=0$ but not differentiable at $x=0$
b) $f(x)$ is continuous as well as differentiable at $x=0$
c) $f(x)$ is discontinuous at $x=0$
d) None of these
16. If $f(x)=[\sqrt{2} \sin x]$, where $[x]$ represents the greatest integer function, then
a) $f(x)$ is periodic
b) Maximum value of $f(x)$ is 1 in the interval $[-2 \pi, 2 \pi]$
c) $f(x)$ is discontinuous at $x=\frac{n \pi}{2}+\frac{\pi}{4}, n \in Z$
d) $f(x)$ is differentiable at $x=n \pi, n \in Z$
17. $\lim _{x \rightarrow 0}\left[(1+3 x)^{1 / x}\right]=k$, then for continuity at $x=0, k$ is
a) 3
b) -3
c) e^{3}
d) e^{-3}
18. Let $f(x)=\left\{\begin{array}{c}\int_{0}^{x}\{5+|1-t|\} d t, \text { if } x>2 \\ 5 x+1, \text { if } x \leq 2\end{array}\right.$
a) $f(x)$ is continuous at $x=2$
b) $f(x)$ is continuous but not differentiable at $x=2$
c) $f(x)$ is everywhere differentiable
d) The right derivative of $f(x)$ at $x=2$ does not exist
19. Let $f(x)=\left\{\begin{array}{c}\frac{1}{|x|} \text { for }|x| \geq 1 \\ a x^{2}+b \text { for }|x|<1\end{array}\right.$

If $f(x)$ is continuous and differentiable at any point, then
a) $a=\frac{1}{2}, b=-\frac{3}{2}$
b) $a=-\frac{1}{2}, b=\frac{3}{2}$
c) $a=1, b=-1$
d) None of these
20. If function $f(x)=\left\{\begin{array}{c}x \text {, if } x \text { is rational } \\ 1-x \text {, if } x \text { is irrational }\end{array}\right.$, then the number of points at which $f(x)$ is continuous, is
a) ∞
b) 1
c) 0
d) None of these

