CLASS : XIIth
SUBJECT : MATHS
DATE :

TOpic :- CONTINUTY AND DIFERENTIABIITY

1. Let $f(x+y)=f(x) f(y)$ for all $x, y \in R$. Suppose that $f(3)=3$ and $f^{\prime}(0)=11$ then, $f^{\prime}(3)$ is equal to
a) 22
b) 44
c) 28
d) None of these
2. If $f(x)=\left\{\begin{array}{cc}x-5, & \text { for } x \leq 1 \\ 4 x^{2}-9, & \text { for } 1<x<2, \text { then } f^{\prime}\left(2^{+}\right) \text {is equal to } \\ 3 x+4, & \text { for } x \geq 2\end{array}\right.$
a) 0
b) 2
c) 3
d) 4
3. $f(x)=\sin |x|$. Then $f(x)$ is not differentiable at
a) $x=0$ only
b) All x
c) Multiples of π
d) Multiples of $\frac{\pi}{2}$
4. If $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\left(\log _{e} a\right)^{n}, a>0, a \neq 0$, then at $x=0, f(x)$ is
a) Everywhere continuous but not differentiable
b) Everywhere differentiable
c) Nowhere continuous
d) None of these
5. The function $f(x)=[x] \cos \left[\frac{2 x-1}{2}\right] \pi$ where [.] denotes the greatest integer function, is discontinuous at
a) All x
b) No x
c) All integer points
d) x which is not an integer
6. The function $f(x)=\left\{\begin{array}{c}1, \quad|x| \geq 1 \\ \frac{1}{n^{2}}, \frac{1}{n}<|x|<\frac{1}{n-1}, n=2,3, \ldots \\ 0, \quad x=0\end{array}\right.$
a) Is discontinuous at finitely many points
b) Is continuous everywhere
c) Is discontinuous only at $x= \pm \frac{1}{n^{\prime}} n \in Z-\{0\}$ and $x=0$
d) None of these
7. Let f is a real-valued differentiable function satisfying $|f(x)-f(y)| \leq(x-y)^{2}, x, y \in R$ and f $(0)=0$, then $f(1)$ equals
a) 1
b) 2
c) 0
d) -1
8. Let $f(x)=\left[2 x^{3}-5\right]$, [] denotes the greatest integer function. Then number of points $(1,2)$ where the function is discontinuous, is
a) 0
b) 13
c) 10
d) 3
9. $\ln [1,3]$ the function $\left[x^{2}+1\right],[x]$ denoting the greatest integer function, is continuous
a) For all x
b) For all x except at four points
c) For all except at seven points
d) For all except at eight-points
10. If $f(x)=\left|\log _{10} x\right|$, then at $x=1$
a) $f(x)$ is continuous and $f^{\prime}\left(1^{+}\right)=\log _{10} e, f^{\prime}\left(1^{-}\right)=-\log _{10} e$
b) $f(x)$ is continuous and $f^{\prime}\left(1^{+}\right)=\log _{10} e, f^{\prime}\left(1^{-}\right)=\log _{10} e$
c) $f(x)$ is continuous and $f^{\prime}\left(1^{-}\right)=\log _{10} e, f^{\prime}\left(1^{+}\right)=-\log _{10} e$
d) None of these
11. The function $f(x)=|\cos x|$ is
a) Everywhere continuous and differentiable
b) Everywhere continuous and but not differentiable at $(2 n+1) \pi / 2, n \in Z$
c) Neither continuous nor differentiable at $(2 n+1) \pi / 2, n \in Z$
d) None of these
12. Let $f(x)=\left\{\begin{array}{l}\frac{x-4}{|x-4|}+a, x<4 \\ a+b, \quad x=4 \\ \frac{x-4}{|x-4|}+b, x>4\end{array}\right.$

Then, $f(x)$ is continuous at $x=4$ when
a) $a=0, b=0$
b) $a=1, b=1$
c) $a=-1, b=1$
d) $a=1, b=-1$
13. If $f(x)=\left\{\begin{array}{r}\frac{2^{x}-1}{\sqrt{1+x}-1},-1 \leq x<\infty, x \neq 0 \\ k, \\ x=0\end{array}\right.$ is continuous everywhere, then k is equal to
a) $\frac{1}{2} \log _{e} 2$
b) $\log _{e} 4$
c) $\log _{e} 8$
d) $\log _{e} 2$
14. The function $f(x)=\left\{\begin{array}{c}x^{n} \sin \left(\frac{1}{x}\right), x \neq 0 \\ 0, x=0\end{array}\right.$ is continuous and differentiable at $x=0$, if
a) $n \in(0,1]$
b) $n \in[1, \infty)$
c) $n \in(1, \infty)$
d) $n \in(-\infty, 0)$
15. The function $f(x)=\left\{\begin{array}{c}\frac{e^{1 / x}-1}{e^{1 / x}+1}, x \neq 0 \\ 0, x=0\end{array}\right.$
a) Is continuous at $x=0$
b) Is not continuous at $x=0$
c) Is not continuous at $x=0$, but can be made continuous $x=0$
d) None of these
16. A function $f(x)=\left\{\begin{array}{ll}1+x, & x \leq 2 \\ 5-x, & x>2\end{array}\right.$ is
a) Not continuous at $x=2$
b) Differenti8able at $x=2$
c) Continuous but not differentiable at $=2$
d) None of the above
17. Let $f(x+y)=f(x) f(y)$ for all $x, y \in R$. If $f^{\prime}(1)=2$ and $f(4)=4$, then $f^{\prime}(4)$ equal to
a) 4
b) 1
c) $1 / 2$
d) 8
18. Let $f(x)=[x]$ and $g(x)=\left\{\begin{array}{c}0, x \in Z \\ x^{2}, x \in R-Z\end{array}\right.$ Then, which one of the following is incorrect?
a) $\lim _{x \rightarrow 1} g(x)$ exists, but $g(x)$ is not continuous at $x=1$
b) $\lim _{x \rightarrow 1} f(x)$ does not exist and $f(x)$ is not continuous at $x=1$
c) gof is continuous for all x
d) fog is continuous for all x
19. If $f(x)=\left\{\begin{array}{lll}x, & \text { for } \quad 0<x<1 \\ 2-x, & \text { for } & 1 \leq x<2 \\ x-(1 / 2) x^{2}, & \text { for } x=2\end{array}\right.$.Then, $f^{\prime}(1)$ is equal to
a) -1
b) 1
c) 0
d) None of these
20. The function $f(x)=|x|+\frac{|x|}{x}$ is
a) Discontinuous at origin because $|x|$ is discontinuous there
b) Continuous at origin
c) Discontinuous at origin because both $|x|$ and $\frac{|x|}{x}$ are discontinuous there
d) Discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there

