

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 5

Topic :- CONTINUITY AND DIFFERENTIABILITY

1. Let $f(x + y) = f(x)f(y)$ for all $x, y \in R$. Suppose that $f(3) = 3$ and $f'(0) = 11$ then, $f'(3)$ is equal to					
eq	a) 22	b)44	c) 28	d)None of these	
2.	If $f(x) = \begin{cases} x-5, & \text{for } x \le 1 \\ 4x^2 - 9, & \text{for } 1 < x < 2, \text{ then } f'(2^+) \text{ is equal to} \\ 3x + 4, & \text{for } x \ge 2 \end{cases}$				
	a) 0	b) 2	c) 3	d)4	
3.	т				
	a) $x = 0$ only	b) All x	c) Multiples of π	d) Multiples of $\frac{\pi}{2}$	
4.	16.				
5. The function $f(x) = [x]\cos\left[\frac{2x-1}{2}\right]\pi$ where [.] denotes the greatest integer function, is discontinuous at					
uis	a) All <i>x</i>		b) No <i>x</i>		
	c) All integer points		d) <i>x</i> which is not an in	teger	
6.	a) Is discontinuous at finitely many points b) Is continuous everywhere				
	c) Is discontinuous only at $x = \pm \frac{1}{n}$, $n \in \mathbb{Z} - \{0\}$ and $x = 0$ d) None of these				
7. Let <i>f</i> is a real-valued differentiable function satisfying $ f(x) - f(y) \le (x - y)^2$, $x, y \in R$ and $f(0) = 0$, then $f(1)$ equals					
	a) 1	b) 2	c) 0	d)-1	

8. Let $f(x) = [2x^3 - 5]$, [] denotes the greatest integer function. Then number of points (1, 2) where the function is discontinuous, is

a) 0 b) 13 c) 10 d) 3

- 9. ln[1, 3] the function [x² + 1], [x] denoting the greatest integer function, is continuous a) For all x
 - b) For all *x* except at four points
 - c) For all except at seven points
 - d) For all except at eight-points
- 10. If $f(x) = |\log_{10} x|$, then at x = 1
 - a) f(x) is continuous and $f'(1^+) = \log_{10} e$, $f'(1^-) = -\log_{10} e$
 - b) f(x) is continuous and $f'(1^+) = \log_{10} e$, $f'(1^-) = \log_{10} e$
 - c) f(x) is continuous and $f'(1^-) = \log_{10} e$, $f'(1^+) = -\log_{10} e$
 - d) None of these
- 11. The function $f(x) = |\cos x|$ is
 - a) Everywhere continuous and differentiable
 - b) Everywhere continuous and but not differentiable at $(2n + 1) \pi/2$, $n \in Z$
 - c) Neither continuous nor differentiable at $(2n + 1) \pi/2$, $n \in Z$
 - d) None of these

12. Let
$$f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, x < 4\\ a+b, x = 4\\ \frac{x-4}{|x-4|} + b, x > 4 \end{cases}$$

Then, f(x) is continuous at $x = \frac{4}{4}$ when

a) a = 0, b = 0 b) a = 1, b = 1 c) a = -1, b = 1 d) a = 1, b = -1

13. If $f(x) = \begin{cases} \frac{2^x - 1}{\sqrt{1 + x} - 1}, & -1 \le x < \infty, \ x \ne 0 \\ k, & x = 0 \end{cases}$ is continuous everywhere, then *k* is equal to

- a) $\frac{1}{2}\log_e 2$ b) $\log_e 4$ c) $\log_e 8$ d) $\log_e 2$
- 14. The function $f(x) = \begin{cases} x^n \sin\left(\frac{1}{x}\right), x \neq 0 \\ 0, x = 0 \end{cases}$ is continuous and differentiable at x = 0, if

a)
$$n \in (0, 1]$$
 b) $n \in [1, \infty)$ c) $n \in (1, \infty)$ d) $n \in (-\infty, 0)$

15. The function
$$f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

- a) Is continuous at x = 0
- b) Is not continuous at x = 0
- c) Is not continuous at x = 0, but can be made continuous x = 0
- d) None of these

16. A function $f(x) = \begin{cases} 1+x, & x \le 2\\ 5-x, & x > 2 \end{cases}$ is a) Not continuous at x = 2b) Differenti8able at x = 2c) Continuous but not differentiable at = 2d) None of the above 17. Let f(x + y) = f(x)f(y) for all $x, y \in R$. If f'(1) = 2 and f(4) = 4, then f'(4) equal to a)4 b)1 c) 1/2 d)8 18. Let f(x) = [x] and $g(x) = \begin{cases} 0, x \in Z \\ x^2, x \in R - Z \end{cases}$ Then, which one of the following is incorrect? a) $\lim_{x \to 1} g(x)$ exists, but g(x) is not continuous at x = 1b) $\lim f(x)$ does not exist and f(x) is not continuous at x = 1c) gof is continuous for all xd) fog is continuous for all x19. If $f(x) = \begin{cases} x, & \text{for } 0 < x < 1\\ 2 - x, & \text{for } 1 \le x < 2. \text{Then, } f'(1) \text{ is equal to } \\ x - (1/2)x^2, & \text{for } x = 2 \end{cases}$ a)-1 b)1 c) 0 d) None of these 20. The function $f(x) = |x| + \frac{|x|}{x}$ is a) Discontinuous at origin because |x| is discontinuous there b) Continuous at origin c) Discontinuous at origin because both |x| and $\frac{|x|}{x}$ are discontinuous there d) Discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there