CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :- CONTINUTY AND DIFFERENTIABLITY

1. The set of points where the function $f(x)=x|x|$ is differentiable is
a) $(-\infty, \infty)$
b) $(-\infty, 0) \cup(0, \infty)$
c) $(0, \infty)$
d) $[0, \infty)$
2. If $f(x+y)=f(x) f(y)$ for all real x and $y, f(6)=3$ and $f^{\prime}(0)=10$, then $f^{\prime}(6)$ is
a) 30
b) 13
c) 10
d) 0
3. If $f(x)=|x-a| \phi(x)$, where $\phi(x)$ is continuous function, then
a) $f^{\prime}\left(a^{+}\right)=\phi(a)$
b) $f^{\prime}\left(a^{-}\right)=\phi(a)$
c) $f^{\prime}\left(a^{+}\right)=f^{\prime}\left(a^{-}\right)$
d) None of these
4. If $f(x)=\left\{\begin{array}{c}x e^{-\left(\frac{1}{|x|}+\frac{1}{x}\right)}, x \neq 0 \\ 0, x=0\end{array}\right.$, then $f(x)$ is
a) Continuous as well as differentiable for all x
b) Continuous for all x but not differentiable at $x=0$
c) Neither differentiable nor continuous at $x=0$
d) Discontinuous everywhere
5. If $f(x)=\left\{\begin{array}{c}3, \quad x<0 \\ 2 x+1, \\ x \geq 0\end{array}\right.$, then
a) Both $f(x)$ and $f(|x|)$ are differentiable at $x=0$
b) $f(x)$ is differentiable but $f(|x|)$ is not differentiable at $x=0$
c) $f(|x|)$ is differentiable but $f(x)$ is not differentiable at $x=0$
d) Both $f(x)$ and $f(|x|)$ are not differentiable at $x=0$
6. If $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists finitely, then
a) $\lim _{x \rightarrow c} f(x)=f(c)$
b) $\lim _{x \rightarrow c} f^{\prime}(x)=f^{\prime}(c)$
c) $\lim _{x \rightarrow c} f(x)$ does not exist
d) $\lim _{x \rightarrow c} f(x)$ may or may not exist
7. The number of points at which the function $f(x)=|x-0.5|+|x-1|+\tan x$ does not have a derivative in the interval $(0,2)$, is
a) 1
b) 2
c) 3
d) 4
8. If $f(x)=\left\{\begin{array}{c}\log _{(1-3 x)}(1+3 x), \text { for } x \neq 0 \\ k, \\ \text { for } x=0\end{array}\right.$ is continuous at $x=0$, then k is equal to
a) -2
b) 2
c) 1
d) -1
9. Let $f(x)$ be a function differentiable at $x=c$. Then, $\lim _{x \rightarrow c} f(x)$ equals
a) $f^{\prime}(c)$
b) $f^{\prime \prime}(c)$
c) $\frac{1}{f(c)}$
d) None of these
10. If $f(x)=a e^{|x|}+b|x|^{2} ; a, b \in R$ and $f(x)$ is differentiable at $x=0$. Then a and b are
a) $a=0, b \in R$
b) $a=1, b=2$
c) $b=0, a \in R$
d) $a=4, b=5$
11. Let $f(x)=(x+|x|)|x|$. The, for all x
a) f and f^{\prime} are continuous
b) f is differentiable for some x
c) f^{\prime} is not continuous
d) $f^{\prime \prime}$ is continuous
12. If $f(x)=\left\{\begin{array}{c}\frac{x-1}{2 x^{2}-7 x+5}, \text { for } x \neq 1 \\ -\frac{1}{3},\end{array}\right.$ for $x=1$, then $f^{\prime}(1)$ is equal to
a) $-\frac{1}{9}$
b) $-\frac{2}{9}$
c) $-\frac{1}{3}$
d) $\frac{1}{3}$
13. Suppose $f(x)$ is differentiable at $x=1$ and $\lim _{h \rightarrow 0} \frac{1}{h} f(1+h)=5$, then $f^{\prime}(1)$ equals
a) 6
b) 5
c) 4
d) 3
14. If $f: R \rightarrow R$ is defined by
$f(x)=\left\{\begin{array}{rc}\frac{x+2}{x^{2}+3 x+2}, & \text { if } x \in R-\{-1,-2\} \\ -1, & \text { if } x=-2 \\ 0, & \text { if } x=-1\end{array}\right.$, then f is continuous on the set
a) R
b) $R-\{-2\}$
c) $R-\{-1\}$
d) $R-(-1,-2)$
15. Let $f(x)=\frac{\left(e^{x}-1\right)^{2}}{\sin \left(\frac{x}{a}\right) \log \left(1+\frac{x}{4}\right)}$ for $x \neq 0 \operatorname{and} f(0)=12$. If f is continuous at $x=0$, then the value of a is equal to
a) 1
b) -1
c) 2
d) 3
16. If a function $f(x)$ is given by $f(x)=\frac{x}{1+x}+\frac{x}{(x+1)(2 x+1)}+\frac{x}{(2 x+1)(3 x+1)}+\ldots \infty$ then at

$$
x=0, f(x)
$$

a) Has no limit
b) Is not continuous
c) Is continuous but not differentiable
d) Is differentiable
17. If $f(x)$ is continuous function and $g(x)$ be discontinuous, then
a) $f(x)+g(x)$ must be continuous
b) $f(x)+g(x)$ must be discontinuous
c) $f(x)+g(x)$ for all x
d) None of these
18. A function $f: R \rightarrow R$ satisfies the equation $f(x+y)=f(x) f(y)$ for all $x, y \in R$ and $f(x) \neq 0$ for all $x \in R$. If $f(x)$ is differentiable at $\mathrm{x}=0$ and $f^{\prime}(0)=2$, then $f^{\prime}(x)$ equals
a) $f(x)$
b) $-f(x)$
c) $2 f(x)$
d) None of these
19. Consider $f(x)= \begin{cases}\frac{x^{2}}{|x|}, & x \neq 0 \\ 0, & x=0\end{cases}$
a) $f(x)$ is discontinuous everywhere
b) $f(x)$ is continuous everywhere
c) $f^{\prime}(x)$ exists in $(-1,1)$
d) $f^{\prime}(x)$ exists in $(-2,2)$
20. If $f(x)$ is continuous at $x=0$ and $f(0)=2$, then
$\lim _{x \rightarrow 0} \frac{\int_{0}^{x} f(u) d u}{x}$ is
a) 0
b) 2
c) $f(2)$
d) None of these

