

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 4

## **Topic :-** CONTINUITY AND DIFFERENTIABILITY

- 1. The set of points where the function f(x) = x|x| is differentiable is a)  $(-\infty, \infty)$  b)  $(-\infty, 0) \cup (0, \infty)$  c)  $(0, \infty)$  d)  $[0, \infty)$
- 2. If f(x + y) = f(x)f(y) for all real x and y, f(6) = 3 and f'(0) = 10, then f'(6) is a) 30 b) 13 c) 10 d) 0
- 3. If  $f(x) = |x a|\phi(x)$ , where  $\phi(x)$  is continuous function, then a)  $f'(a^+) = \phi(a)$  b)  $f'(a^-) = \phi(a)$  c)  $f'(a^+) = f'(a^-)$  d) None of these
- 4. If  $f(x) = \begin{cases} xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0, \text{ then } f(x) \text{ is } \\ 0, & x = 0 \end{cases}$ 
  - a) Continuous as well as dif<mark>feren</mark>tiable for all *x*
  - b) Continuous for all x but not differentiable at x = 0
  - c) Neither differentiable no<mark>r con</mark>tinuous at x = 0
  - d) Discontinuous everywhe<mark>re</mark>
- 5. If  $f(x) = \begin{cases} 3, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$  then
  - a) Both f(x) and f(|x|) are differentiable at x = 0
  - b) f(x) is differentiable but f(|x|) is not differentiable at x = 0
  - c) f(|x|) is differentiable but f(x) is not differentiable at x = 0
  - d) Both f(x) and f(|x|) are not differentiable at x = 0
- 6. If  $\lim_{x \to c} \frac{f(x) f(c)}{x c}$  exists finitely, then a)  $\lim_{x \to c} f(x) = f(c)$ b)  $\lim_{x \to c} f'(x) = f'(c)$ c)  $\lim_{x \to c} f(x)$  does not exist d)  $\lim_{x \to c} f(x)$  may or may not exist

7. The number of points at which the function  $f(x) = |x - 0.5| + |x - 1| + \tan x$  does not have a derivative in the interval (0, 2), is

a) 1 b) 2 c) 3 d) 4

8. If 
$$f(x) = \begin{cases} \log_{1-3x}(1+3x), \text{ for } x \neq 0 \\ \text{ for } x = 0 \end{cases}$$
 is continuous at  $x = 0$ , then  $k$  is equal to  
a) -2 b) 2 c) 1 d) -1  
9. Let  $f(x)$  be a function differentiable at  $x = c$ . Then,  $\lim_{x \to c} f(x)$  equals  
a)  $f'(c)$  b)  $f''(c)$  c)  $\frac{1}{f(c)}$  d) None of these  
10. If  $f(x) = ae^{|x|} + b|x|^2$ ;  $a, b \in R$  and  $f(x)$  is differentiable at  $x = 0$ . Then  $a$  and  $b$  are  
a)  $a = 0, b \in R$  b)  $a = 1, b = 2$  c)  $b = 0, a \in R$  d)  $a = 4, b = 5$   
11. Let  $f(x) = (x + |x|)|x|$ . The, for all  $x$   
a)  $f$  and  $f'$  are continuous  
b)  $f$  is differentiable for some  $x$   
c)  $f'$  is not continuous  
d)  $f''$  is continuous  
d)  $f''$  is continuous  
d)  $f''$  is continuous  
a)  $-\frac{1}{9}$  b)  $-\frac{2}{9}$  c)  $-\frac{1}{3}$  d)  $\frac{1}{3}$   
13. Suppose  $f(x)$  is differentiable at  $x = 1$  and  $\lim_{h \to 0} \frac{1}{h} f(1 + h) = 5$ , then  $f'(1)$  equals  
a)  $6$  b)  $5$  c)  $4$  d)  $3$   
14. If  $f:R \to R$  is defined by  
 $f(x) = \begin{cases} \frac{x+2}{x^2+3x+2}, \text{ if } x \in R - \{-1, -2\} \\ -1, \text{ if } x = -1 \\ 0, \text{ if } x = -2 \\ 0, x = 0$  and  $f(0) = 12$ . If  $f$  is continuous at  $x = 0$ , then the value of  $a$   
is equal to  
a)  $1$  b)  $-1$  c)  $2$  d)  $3$   
16. If a function  $f(x)$  is given by  $f(x) = \frac{x}{1+x} + \frac{x}{(x+1)(2x+1)} + \frac{x}{(2x+1)(3x+1)} + ...\infty$  then at  
 $x = 0, f(x)$   
a) Has no limit  
b) Is not continuous  
c) Is continuous but not differentiable  
d) Is differentiable  
d) Is differentiable

a) f(x) + g(x) must be continuous b) f(x) + g(x) must be discontinuous c) f(x) + g(x) for all x

d) None of these

18. A function  $f:R \rightarrow R$  satisfies the equation f(x + y) = f(x)f(y) for all  $x, y \in R$  and  $f(x) \neq 0$  for all  $x \in R$ . If f(x) is differentiable at x = 0 and f'(0) = 2, then f'(x) equals a) f(x)b) -f(x)c) 2f(x)d) None of these

19. Consider  $f(x) = \begin{cases} \frac{x^2}{|x|}, & x \neq 0\\ 0, & x = 0 \end{cases}$ 

a) f(x) is discontinuous everywhere

b) f(x) is continuous everywhere c) f'(x) exists in (-1, 1)

d) f'(x) exists in ( - 2, 2)

