CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 3

Topic :- CONTINUTY AND DIFFERENTIABIIITY

1. Let $f(x)=\left\{\begin{array}{ll}5^{1 / x}, & x<0 \\ \lambda[x], & x \geq 0\end{array}\right.$ and $\lambda \in R$, then at $x=0$
a) f is discontinuous
b) f is continuous only, if $\lambda=0$
c) f is continuous only, whatever λ may be
d) None of the above
2. If for a continuous function $\mathrm{f}, f(0)=f(1)=0, f^{\prime}(1)=2$ and $y(x)=f\left(e^{x}\right) e^{f(x)}$, then $y^{\prime}(0)$ is equal to
a) 1
b) 2
c) 0
d) None of these
3. If $f(x)=\left\{\begin{array}{c}a x^{2}-b,|x|<1 \\ \frac{1}{|x|},|x| \geq 1\end{array}\right.$ is differentiable at $x=1$, then
a) $a=\frac{1}{2}, b=-\frac{1}{2}$
b) $a=-\frac{1}{2}, b=-\frac{3}{2}$
c) $a=b=\frac{1}{2}$
d) $a=b=-\frac{1}{2}$
4. Let $f(x)=\frac{\sin 4 \pi[x]}{1+[x]^{2}}$, where $[x]$ is the greatest integer less than or equal to x, then
a) $f(x)$ is not differentiable at some points
b) $f^{\prime}(x)$ exists but is different from zero
c) $f^{\prime}(x)=0$ for all x
d) $f^{\prime}(x)=0$ but f is not a constant function
5. The value of k which makes $f(x)=\left\{\begin{array}{c}\sin (1 / k), x \neq 0 \\ k, x=0\end{array}\right.$ continuous at $x=0$ is
a) 8
b) 1
c) -1
d) None of these
6. The function $f(x)=\max [(1-x),(1+x), 2], x \in(-\infty, \infty)$ is
a) Continuous at all points
b) Differentiable at all points
c) Differentiable at all points except at $x=1$ and $x=-1$ d) None of the above
7. Let $f(x)$ be defined for all $x>0$ and be continuous. Let $f(x)$ satisfy $f\left(\frac{x}{y}\right)=f(x)-f(y)$ for all x, y and $f(e)=1$. Then,
a) $f(x)$ is bounded
b) $f\left(\frac{1}{x}\right) \rightarrow 0$ as $x \rightarrow 0$
c) $x f(x) \rightarrow 1$ as $x \rightarrow 0$
d) $f(x)=\ln x$
8. Suppose a function $f(x)$ satisfies the following conditions for all x and y : (i) $f(x+y)=f(x)$ $f(y)$ (ii) $f(x)=1+x g(x) \log a$, where $a>1$ and $\lim _{x \rightarrow 0} g(x)=1$. Then, $f^{\prime}(x)$ is equal to
a) $\log a$
b) $\log a^{f(x)}$
c) $\log (f(x))^{a}$
d) None of these
9. Let $g(x)$ be the inverse of the function $f(x)$ and $f^{\prime}(x)=\frac{1}{1+x^{3}}$. Then, $g^{\prime}(x)$ is equal to
a) $\frac{1}{1+(g(x))^{3}}$
b) $\frac{1}{1+(f(x))^{3}}$
c) $1+(g(x))^{3}$
d) $1+(f(x))^{3}$
10. If $f(x)=\left|x^{2}-4 x+3\right|$, then
a) $f^{\prime}(1)=-1$ and $f^{\prime}(3)=1$
b) $f^{\prime}(1)=-1$ and $f^{\prime}(3)$ does not exist
c) $f^{\prime}(1)=-1$ does not exist and $f^{\prime}(3)=1$
d) Both $f^{\prime}(1)$ and $f^{\prime}(3)$ do not exist
11. The points of discontinuity of $\tan x$ are
a) $n \pi, n \in I$
b) $2 n \pi, n \in I$
c) $(2 n+1) \frac{\pi}{2}, n \in I$
d) None of these
12. Let $f(x)=||x|-1|$, then points where $f(x)$ is not differentiable, is/(are)
a) $0, \pm 1$
b) ± 1
c) 0
d) 1
13. $f(x)=\left\{\begin{array}{ll}2 x, & x<0 \\ 2 x+1, & x \geq 0\end{array}\right.$. Then
a) $f(x)$ is continuous at $x=0$
b) $f(|x|)$ is continuous at $x=0 \quad$ c) $\quad f(x)$ is
discontinuous at $x=0 \quad$ d) None of the above
14. Let $f(x)=[x]+\sqrt{x-[x]}$, where $[x]$ denotes the greatest integer function. Then,
a) $f(x)$ is continuous on R^{+}
b) $f(x)$ is continuous on R
c) $f(x)$ is continuous on $R-Z$
d) None of these
15. The function $f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}$ is not defined at $x=\pi$. The value of $f(\pi)$, so that $f(x)$ is continuous at $x=\pi$, is
a) $-1 / 2$
b) $1 / 2$
c) -1
d) 1
16. Let $f(x)=\left\{\begin{array}{c}(x-1) \sin \frac{1}{x-1}, \quad \text { if } x \neq 1 \text {. Then, which one of the following is true? } \\ 0, \quad \text { if } x=1\end{array}\right.$.
a) f is differentiable at $x=1$ but not at $x=0$
b) f is neither differentiable at $x=0$ nor at $x=1$
c) f is differentiable at $x=0$ and at $x=1$
d) f is differentiable at $x=0$ but not at $x=1$
17. If $f(x)=\left\{\begin{array}{c}m x+1, x \leq \frac{\pi}{2} \\ \sin x+n, x>\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$, then
a) $m=1, n=0$
b) $m=\frac{n \pi}{2}+1$
c) $n=\frac{m \pi}{2}$
d) $m=n=\frac{\pi}{2}$
18. Let f be differentiable for all x. If $f(1)=-2$ and $f^{\prime}(x) \geq 2$ for $x \in[1,6]$, then
a) $f(6)=5$
b) $f(6)<5$
c) $f(6)<8$
d) $f(6) \geq 8$
19. If $\lim _{x \rightarrow a^{+}} f(x)=l=\lim _{x \rightarrow a^{-}} g(x)$ and $\lim _{x \rightarrow a^{-}} f(x)=m \lim _{x \rightarrow a^{+}} g(x)$, then the function $f(x) g(x)$
a) Is not continuous at $x=a$
b) Has a limit when $x \rightarrow a$ and it is equal to $l m$
c) Is continuous at $x=a$
d) Has a limit when $x \rightarrow a$ but it is not equal to $l m$
20. Let $f(x)$ be a function satisfying $f(x+y)=f(x) f(y)$ for all $x, y \in R$ and $f(x)=1+x g(x)$ where $\lim _{x \rightarrow 0} g(x)=1$. Then, $f^{\prime}(x)$ is equal to
a) $g^{\prime}(x)$
b) $\quad g(x)$
c) $\quad f(x)$
d) None of these
