

CLASS: XIIth DATE:

SUBJECT: MATHS

DPP NO.: 3

Topic:- continuity and differentiability

1. Let
$$f(x) = \begin{cases} 5^{1/x}, & x < 0 \\ \lambda[x], & x \ge 0 \end{cases}$$
 and $\lambda \in R$, then at $x = 0$

a) *f* is discontinuous

- b) *f* is continuous only, if $\lambda = 0$
- c) f is continuous only, whatever λ may be
- d) None of the above
- 2. If for a continuous function f, f(0) = f(1) = 0, f'(1) = 2 and $y(x) = f(e^x)e^{f(x)}$, then y'(0) is equal to
 - a) 1

b)2

c) 0

- d) None of these
- 3. If $f(x) = \begin{cases} ax^2 b, |x| < 1 \\ \frac{1}{|x|}, |x| \ge 1 \end{cases}$ is differentiable at x = 1, then

 a) $a = \frac{1}{2}$, $b = -\frac{1}{2}$ b) $a = -\frac{1}{2}$, $b = -\frac{3}{2}$ c) $a = b = \frac{1}{2}$ d) $a = b = -\frac{1}{2}$

- 4. Let $f(x) = \frac{\sin 4 \pi [x]}{1 + |x|^2}$, where [x] is the greatest integer less than or equal to x, then
 - a) f(x) is not differentiable at some points
 - b) f'(x) exists but is different from zero
 - c) f'(x) = 0 for all x
 - d) f'(x) = 0 but f is not a constant function
- The value of k which makes $f(x) = \begin{cases} \sin(1/k), & x \neq 0 \\ k, & x = 0 \end{cases}$ continuous at x = 0 is
 - a)8

b) 1

c) -1

- d) None of these
- 6. The function $f(x) = \max[(1-x), (1+x), 2], x \in (-\infty, \infty)$ is
 - a) Continuous at all points

- b) Differentiable at all points
- c) Differentiable at all points except at x = 1 and x = -1 d)
- None of the above
- 7. Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f\left(\frac{x}{y}\right) = f(x) f(y)$ for all
- x, y and f(e) = 1. Then, a) f(x) is bounded
- b) $f(\frac{1}{x}) \to 0$ as $x \to 0$ c) $xf(x) \to 1$ as $x \to 0$ d) $f(x) = \ln x$

- 8. Suppose a function f(x) satisfies the following conditions for all x and y: (i) f(x + y) = f(x)
- f(y) (ii) $f(x) = 1 + x g(x)\log a$, where a > 1 and $\lim g(x) = 1$. Then, f'(x) is equal to
 - a) $\log a$
- b) $\log a^{f(x)}$
- c) $\log (f(x))^a$
- d) None of these
- 9. Let g(x) be the inverse of the function f(x) and $f'(x) = \frac{1}{1+x^3}$. Then, g'(x) is equal to
- b) $\frac{1}{1+(f(r))^3}$
- c) $1 + (g(x))^3$ d) $1 + (f(x))^3$

- 10. If $f(x) = |x^2 4x + 3|$, then
 - a) f'(1) = -1 and f'(3) = 1
 - b) f'(1) = -1 and f'(3) does not exist
 - c) f'(1) = -1 does not exist and f'(3) = 1
 - d) Both f'(1) and f'(3) do not exist
- 11. The points of discontinuity of tan x are
 - a) $n\pi$, $n \in I$
- b) $2n\pi$, $n \in I$
- c) $(2n+1)^{\frac{\pi}{2}}$, $n \in I$ d) None of these
- 12. Let f(x) = ||x| 1|, then points where f(x) is not differentiable, is/(are)
 - a) 0, ± 1
- b) ± 1
- c) 0

d) 1

- 13. $f(x) = \begin{cases} 2x, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$. Then
 - a) f(x) is continuous at x = 0
- b) f(|x|) is continuous at x = 0 c)
- f(x) is

- discontinuous at x = 0
- d) None of the above
- 14. Let $f(x) = [x] + \sqrt{x [x]}$, where [x] denotes the greatest integer function. Then,
 - a) f(x) is continuous on R^+
 - b) f(x) is continuous on R
 - c) f(x) is continuous on R-Z
 - d) None of these
- 15. The function $f(x) = \frac{1 \sin x + \cos x}{1 + \sin x + \cos x}$ is not defined at $x = \pi$. The value of $f(\pi)$, so that f(x) is continuous at $x = \pi$, is
 - a) -1/2
- b)½

c) -1

- d)1
- 16. Let $f(x) = \begin{cases} (x-1)\sin\frac{1}{x-1}, & \text{if } x \neq 1 \\ 0, & \text{if } x = 1 \end{cases}$. Then, which one of the following is true?
 - a) f is differentiable at x = 1 but not at x = 0
 - b) f is neither differentiable at x = 0 nor at x = 1
 - c) f is differentiable at x = 0 and at x = 1
 - d) f is differentiable at x = 0 but not at x = 1

- 17. If $f(x) = \begin{cases} mx + 1, & x \le \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$, then

 - a) m = 1, n = 0 b) $m = \frac{n\pi}{2} + 1$
- c) $n = \frac{m\pi}{2}$ d) $m = n = \frac{\pi}{2}$
- 18. Let f be differentiable for all x. If f(1) = -2 and $f'(x) \ge 2$ for $x \in [1, 6]$, then
 - a) f(6) = 5
- b) f(6) < 5
- c) f(6) < 8
- d) $f(6) \ge 8$
- 19. If $\lim_{x \to a} f(x) = l = \lim_{x \to a} g(x)$ and $\lim_{x \to a} f(x) = m \lim_{x \to a} g(x)$, then the function f(x) g(x) $x \rightarrow a^{-1}$
 - a) Is not continuous at x = a
 - b) Has a limit when $x\rightarrow a$ and it is equal to lm
 - c) Is continuous at x = a
 - d) Has a limit when $x\rightarrow a$ but it is not equal to lm
- 20. Let f(x) be a function satisfying f(x + y) = f(x)f(y) for all $x, y \in R$ and f(x) = 1 + x g(x)where $\lim g(x) = 1$. Then, f'(x) is equal to

d)

- a) g'(x) b)
- g(x) c)
- None of these

