CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 2

Topic :- Continuty and differentiabienty

1. The set of points where the function $f(x)=\sqrt{1-e^{-x^{2}}}$ is differentiable is
a) $(-\infty, \infty)$
b) $(-\infty, 0) \cup(0, \infty)$
c) $(-1, \infty)$
d) None of these
2. If $f(x)=x \sin \left(\frac{1}{x}\right), x \neq 0$, then the value of function at $x=0$, so that the function is continuous at $x=0$ is
a) 1
b) -1
c) 0
d) Indeterminate
3. The value of $f(0)$ so that the function $f(x)=\frac{2-(256-7 x)^{1 / 8}}{(5 x+32)^{1 / 5}-2}(x \neq 0)$ is continuous everywhere, is given by
a) -1
b) 1
c) 26
d) None of these
4. The derivative of $f(x)=|x|^{3}$ at $x=0$ is
a) -1
b) 0
c) Does not exist
d) None of these
5. If $f(x)=\left\{\begin{array}{c}\frac{\left(4^{x}-1\right)^{3}}{\sin \left(\frac{x}{a}\right) \log \left(1+\frac{x^{2}}{3}\right)}, x \neq 0 \\ 9(\log 4)^{3}, x=0\end{array}\right.$ is continuous function at $x=0$, then the value of a is equal to
a) 3
b) 1
c) 2
d) 0
6. $f(x)=|[x]+x|$ in $-1<x \leq 2$ is
a) Continuous at $x=0$
b) Discontinuous at $x=1$
c) Not differentiable at $x=2,0$
d) All the above
7. Let $f(x)=\left[x^{3}-x\right]$, where $[x]$ the greatest integer function is. Then the number of points in the interval (1,2), where function is discontinuous is
a) 4
b) 5
c) 6
d) 7
8. If $y=\cos ^{-1} \cos (|x|-f(x))$, where
$f(x)=\left\{\begin{array}{l}1, \text { if } x>0 \\ -1, \text { if } x<0 . \text { Then, }(d y / d x) x=\frac{5 \pi}{4} \text { is equal to } \\ 0, \text { if } x=0\end{array}\right.$
a) -1
b) 1
c) 0
d) Cannot be determined
9. Let $f(x+y)=f(x)+f(y)$ and $f(x)=x^{2} g(x)$ for all $x, y \in R$, where $g(x)$ is continuous function. Then, $f^{\prime}(x)$ is equal to
a) $g^{\prime}(x)$
b) $g(0)$
c) $g(0)+g^{\prime}(x)$
d) 0
10. Let a function $f(x)$ be defined by $f(x)=\left\{\begin{array}{cc}x, & x \in Q \\ 0, & x \in R-Q\end{array}\right.$ Then, $f(x)$ is
a) Everywhere continuous
b) Nowhere continuous
c) Continuous only at some points
d) Discontinuous only at some points
11. The function $f(x)=\left\{\begin{array}{c}1-2 x+3 x^{2}-4 x^{3}+\ldots \text { to } \infty, x \neq-1 \\ 1, \quad \text { is } \\ x=-1\end{array}\right.$,
a) Continuous and derivable at $x=-1$
b) Neither continuous nor derivable at $x=-1$
c) Continuous but not derivable at $x=-1$
d) None of these
12. $f(x)=\left\{\begin{array}{c}2 a-x \text { in }-a<x<a \\ 3 x-2 a \text { in } a \leq x\end{array}\right.$. Then, which of the following is true?
a) $f(x)$ is discontinuous at $x=a$
b) $f(x)$ is not differentiable at $x=a$
c) $f(x)$ is differentiable at $x \geq a$
d) $f(x)$ is continuous at all $x<a$
13. Let $f(x+y)=f(x) f(y)$ and $f(x)=1+(\sin 2 x) g(x)$ where $g(x)$ is continuous. Then, $f^{\prime}(x)$ equals
a) $f(x) g(0)$
b) $2 f(x) g(0)$
c) $2 g(0)$
d) None of these
14. If $f(x)=[x \sin \pi x]$, then which of the following is incorrect?
a) $f(x)$ is continuous at $x=0$
b) $f(x)$ is continuous in $(-1,0)$
c) $f(x)$ is differentiable at $x=1$
d) $f(x)$ is differentiable in $(-1,1)$
15. If $f(x)=\left\{\begin{aligned} 1, x<0 \\ 1+\sin x, 0 \leq x \leq \frac{\pi}{2}\end{aligned}\right.$ then derivative of $f(x)$ at $x=0$
a) Is equal to 1
b) Is equal to 0
c) Is equal to -1
d) Does not exist
16. If the derivative of the function $f(x)$ is everywhere continuous and is given by $f(x)=\left\{\begin{array}{c}b x^{2}+a x+4 ; x \geq-1 \\ a x^{2}+b ; x<-1\end{array}\right.$, then
a) $a=2, b=-3$
b) $a=3, b=2$
c) $a=-2, b=-3$
d) $a=-3, b=-2$
17. If $f(x)=\left\{\begin{array}{c}\frac{x \log \cos x}{\log \left(1+x^{2}\right)}, x \neq 0 \\ 0, x=0\end{array}\right.$, then
a) $f(x)$ is not continuous at $x=0$
b) $f(x)$ is not continuous and differentiable at $x=0$
c) $f(x)$ is not continuous at $x=0$ but not differentiable at $x=0$
d) None of these
18. If the function $f(x)=\left\{\begin{array}{c}A x-B, x \leq 1 \\ 3 x, 1<x<2 \\ B x^{2}-A, x \geq 2\end{array}\right.$ be continuous at $x=1$ and discontinuous at $x=2$, then
a) $A=3+B, B \neq 3$
b) $A=3+B, B=3$
c) $A=3+B$
d) None of these
19. If $f(x)=\left\{\begin{array}{c}|x-4| \text {, for } x \geq 1 \\ \left(x^{3} / 2\right)-x^{2}+3 x+(1 / 2) \text {, for } x<1\end{array}\right.$, then
a) $f(x)$ is continuous at $x=1$ and $x=4$
b) $f(x)$ is differentiable at $x=4$
c) $f(x)$ is continuous and differentiable at $x=1$
d) $f(x)$ is not continuous at $x=1$
20. The function $f(x)=a[x+1]+b[x-1]$, where $[x]$ is the greatest integer function, is continuous at $x=1$, is
a) $a+b=0$
b) $a=b$
c) $2 a-b=0$
d) None of these
