

CLASS : XIIth DATE : **SUBJECT : MATHS DPP NO. : 10**

Topic :- CONTINUITY AND DIFFERENTIABILITY

1. Which one of the following is not true always? a) If f(x) is not continuous at x = a, then it is not differentiable at x = ab) If f(x) is continuous at x = a, then it is differentiable at x = ac) If f(x) and g(x) are differentiable at x = a, then f(x) + g(x) is also differentiable at x = ad) If a function f(x) is continuous at x = a, then $\lim f(x)$ exists $x \rightarrow a$ 2. The value of the derivative of |x - 1| + |x - 3| at x = 2 is a) 2 b)1 c) 0 d)-2 3. On the interval I = [-2, 2], the function $f(x) = \begin{cases} (x+1) e^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)} \\ 0, x = 0 \end{cases}$, $x \neq 0$ a) Is continuous for all $x \in I - \{0\}$ b) Assumes all intermediate values from f(-2) to f(2)c) Has a maximum value equal to 3/e d) All the above 4. Function $f(x) = \begin{cases} x - 1, x < 2 \\ 2x - 3, x \ge 2 \end{cases}$ is a continuous function b) For all real values of x such that $x \neq 2$ a) For x = 2 only c) For all real values of x d) For all integer values of x only The function $f(x) = \begin{cases} \frac{\tan x}{x}, & x \neq 0\\ 1, & x = 0 \end{cases}$, is 5. a) Continuous but not differentiable at x = 0b) Discontinuous at x = 0c) Continuous and differentiable at x = 0d) Not defined at x = 06. At the point *x* = 1, the function $f(x) = \begin{cases} x^3 - 1, \ 1 < x < \infty \\ x - 1, \ -\infty < x \le 1 \end{cases}$ a) Continuous and differentiable b) Continuous and not differentiable c) Discontinuous and differentiable d) Discontinuous and not differentiable

7.	If $f(x)$ defined by $f(x)$	$= \begin{cases} \frac{ x^2 - x }{x^2 - x} \\ 1, \\ -1, \end{cases}$	$x \neq 0, 1$ x = 0 then $x = 1$	f(x) is continuous for a	all	
	a) x b) x except at $x = 0$ c) x except at $x = 1$ d) x except at $x = 0$ and	dx = 1				
8.	The value of derivative a) –2	e of x — 1 b) 0	+ x-3 at x	= 2, is c) 2	d)Not defined	
9.	If $f(x) = \begin{cases} 1 & \text{for } x < 0\\ 1 + \sin x & \text{for } 0 \le x \le \pi/2 \end{cases}$, then at $x = 0$, the derivative $f'(x)$ is					
	a) 1	b)0		c) Infinite	d)Does not exist	
10. Let $g(x) = \frac{(x-1)^n}{\log \cos^m(x-1)}$; $0 < x < 2$, <i>m</i> and <i>n</i> are integers, $m \neq 0$, $n > 0$, and let <i>p</i> be the left hand derivative of $ x-1 $ at $x = 1$. If $\lim_{x \to 1^+} g(x) = p$, then						
	a) <i>n</i> = 1, <i>m</i> = 1	b) $n = 1$,	m = -1	c) <i>n</i> = 2, <i>m</i> = 2	d) $n > 2, m = n$	
11.	The function $f(x) = \frac{1}{x^3}$ a) $x = 1$ only c) $x = 1, x = -1, x = -1$	$\frac{2x^2+7}{x+3x^2-x-3}$ 3 only	3 is discontinu	ous for b) $x = 1$ and $x = -1$ or d) $x = 1$, $x = -1$, $x = -1$	nly -3 and other values of <i>x</i>	
12. If for a function $f(x)$, $f(2) = 3$, $f'(2) = 4$, then $\lim_{x \to 2} [f(x)]$, where $[\cdot]$ denotes the greatest integer						
fun	ction, is	L) 2		-2.4		
	a) 2	0)3		CJ 4	a) Non-existent	
13. f(x	3. A function $f(x)$ is defined as fallows for real x , $(x) = \begin{cases} 1 - x^2, \text{ for } x < 1\\ 0, & \text{ for } x = 1\\ 1 + x^2, \text{ for } x > 1 \end{cases}$ Then,					
	 a) f(x), is not continuous at x = 1 b) f(x) is continuous but not differentiable at x = 1 c) f(x) is both continuous and differentiable at x = 1 d) None of the above 					
14.	14. Let $f: R \to R$ be a function defined by $f(x) = \min\{x + 1, x + 1\}$. Then, which of the following is true?					
uut	a) $f(x) \ge 1$ for all $x \in R$ c) $f(x)$ is differentiable everywhere			b) $f(x)$ is not differentiable at $x = 1$ d) $f(x)$ is not differentiable at $x = 0$		

15. If $f(x) = \begin{cases} mx+1, & x \le \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2} \end{cases}$ is continuous t $x = \frac{\pi}{2}$, then

a) m = 1, n = 016. If $f(x) = \frac{\log_e(1 + x^2 \tan x)}{\sin x^3}, x \neq 0$, is to be continuous at x = 0, then f(0) must be defined as a) 1 b) 0 c) $\frac{1}{2}$ d) $m = n = \frac{\pi}{2}$ d) $m = n = \frac{\pi}{2}$

17. Let $f(x) = \begin{cases} x^p \sin \frac{1}{x}, x \neq 0\\ 0, x = 0 \end{cases}$ then f(x) is continuous but not differentiable at x = 0, if a) $0 b) <math>1 \le p < \infty$ c) $-\infty d) <math>p = 0$

18. The function *f* defined by $f(x) = \begin{cases} \frac{\sin x^2}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$ is

- a) Continuous and derivable at x = 0
- b) Neither continuous nor derivable at x = 0
- c) Continuous but not derivable at x = 0
- d) None of these

19. A function *f* on *R* into itself is continuous at a point *a* in *R*, iff for each $\in > 0$, there exists, $\delta > 0$ such that

a)
$$|f(x) - f(a)| \le \Rightarrow |x - a| \le \delta$$

c) $|x - a| \ge \delta |f(x) - f(a)| \ge \epsilon$
20. The function $f(x) = x - |x - x^2|, -1 \le x \le 1$ is continuous on the interval
a) $[-1, 1]$
b) $(-1, 1)$
c) $[-1, 0) \cup (0, 1]$
d) $(-1, 0) \cup (0, 1)$