CLASS : XIIth
SUBJECT : MATHS
DATE :
DPP NO. : 10

Topic :- CONTINUTY AND DIFFERENTIABLILITIT

1. Which one of the following is not true always?
a) If $f(x)$ is not continuous at $x=a$, then it is not differentiable at $x=a$
b) If $f(x)$ is continuous at $x=a$, then it is differentiable at $x=a$
c) If $f(x)$ and $g(x)$ are differentiable at $x=a$, then $f(x)+g(x)$ is also differentiable at $x=a$
d) If a function $f(x)$ is continuous at $x=a$, then $\lim _{x \rightarrow a} f(x)$ exists
2. The value of the derivative of $|x-1|+|x-3|$ at $x=2$ is
a) 2
b) 1
c) 0
d) -2
3. On the interval $I=[-2,2]$, the function $f(x)=\left\{\begin{array}{c}(x+1) e^{-\left(\frac{1}{|x|}+\frac{1}{x}\right)} \\ 0, \quad x=0\end{array}, x \neq 0\right.$
a) Is continuous for all $x \in I-\{0\}$
b) Assumes all intermediate values from $f(-2)$ to $f(2)$
c) Has a maximum value equal to $3 / e$
d) All the above
4. Function $f(x)=\left\{\begin{array}{l}x-1, x<2 \\ 2 x-3, x \geq 2\end{array}\right.$ is a continuous function
a) For $x=2$ only
b) For all real values of x such that $x \neq 2$
c) For all real values of x
d) For all integer values of x only
5. The function $f(x)=\left\{\begin{array}{c}\frac{\tan x}{x}, x \neq 0 \\ 1, x=0\end{array}\right.$, is
a) Continuous but not differentiable at $x=0$
b) Discontinuous at $x=0$
c) Continuous and differentiable at $x=0$
d) Not defined at $x=0$
6. At the point $x=1$, the function $f(x)=\left\{\begin{array}{c}x^{3}-1,1<x<\infty \\ x-1,-\infty<x \leq 1\end{array}\right.$
a) Continuous and differentiable
b) Continuous and not differentiable
c) Discontinuous and differentiable
d) Discontinuous and not differentiable
7. If $f(x)$ defined by $f(x)=\left\{\begin{array}{c}\frac{\left|x^{2}-x\right|}{x^{2}-x}, x \neq 0,1 \\ 1, x=0 \\ -1, x=1\end{array}\right.$ then $f(x)$ is continuous for all
a) x
b) x except at $x=0$
c) x except at $x=1$
d) x except at $x=0$ and $x=1$
8. The value of derivative of $|x-1|+|x-3|$ at $x=2$, is
a) -2
b) 0
c) 2
d) Not defined
9. If $f(x)=\left\{\begin{array}{cc}1 & \text { for } x<0 \\ 1+\sin x & \text { for } 0 \leq x \leq \pi / 2\end{array}\right.$, then at $x=0$, the derivative $f^{\prime}(x)$ is
a) 1
b) 0
c) Infinite
d) Does not exist
10. Let $g(x)=\frac{(x-1)^{n}}{\log \cos ^{m}(x-1)} ; 0<x<2, m$ and n are integers, $m \neq 0, n>0$, and let p be the left hand derivative of $|x-1|$ at $x=1$. If $\lim _{x \rightarrow 1^{+}} g(x)=p$, then
a) $n=1, m=1$
b) $n=1, m=-1$
c) $n=2, m=2$
d) $n>2, m=n$
11. The function $f(x)=\frac{2 x^{2}+7}{x^{3}+3 x^{2}-x-3}$ is discontinuous for
a) $x=1$ only
b) $x=1$ and $x=-1$ only
c) $x=1, x=-1, x=-3$ only
d) $x=1, x=-1, x=-3$ and other values of x
12. If for a function $f(x), f(2)=3, f^{\prime}(2)=4$, then $\lim _{x \rightarrow 2}[f(x)]$, where $[\cdot]$ denotes the greatest integer function, is
a) 2
b) 3
c) 4
d) Non-existent
13. A function $f(x)$ is defined as fallows for real x,
$f(x)=\left\{\begin{array}{l}1-x^{2}, \text { for } x<1 \\ 0, \quad \text { for } x=1 \\ 1+x^{2}, \text { for } x>1\end{array}\right.$ Then,
a) $f(x)$, is not continuous at $x=1$
b) $f(x)$ is continuous but not differentiable at $x=1$
c) $f(x)$ is both continuous and differentiable at $x=1$
d) None of the above
14. Let $f: R \rightarrow R$ be a function defined by $f(x)=\min \{x+1,|x|+1\}$. Then, which of the following is true?
a) $f(x) \geq 1$ for all $x \in R$
b) $f(x)$ is not differentiable at $x=1$
c) $f(x)$ is differentiable everywhere
d) $f(x)$ is not differentiable at $x=0$
15. If $f(x)=\left\{\begin{array}{cc}m x+1, & x \leq \frac{\pi}{2} \\ \sin x+n, & x>\frac{\pi}{2}\end{array}\right.$ is continuous $t x=\frac{\pi}{2}$, then
a) $m=1, n=0$
b) $m=\frac{n \pi}{2}+1$
c) $n=m \frac{\pi}{2}$
d) $m=n=\frac{\pi}{2}$
16. If $f(x)=\frac{\log _{e}\left(1+x^{2} \tan x\right)}{\sin x^{3}}, x \neq 0$, is to be continuous at $x=0$, then $f(0)$ must be defined as
a) 1
b) 0
c) $\frac{1}{2}$
d) -1
17. Let $f(x)=\left\{\begin{array}{c}x^{P} \sin \frac{1}{x}, x \neq 0 \\ 0,\end{array} \quad x=0\right.$ then $f(x)$ is continuous but not differentiable at $x=0$, if
a) $0<p \leq 1$
b) $1 \leq p<\infty$
c) $-\infty<p<0$
d) $p=0$
18. The function f defined by
$f(x)=\left\{\begin{array}{c}\frac{\sin x^{2}}{x}, x \neq 0 \\ 0, x=0\end{array}\right.$ is
a) Continuous and derivable at $x=0$
b) Neither continuous nor derivable at $x=0$
c) Continuous but not derivable at $x=0$
d) None of these
19. A function f on R into itself is continuous at a point a in R, iff for each $\in>0$, there exists, $\delta>0$ such that
a) $|f(x)-f(a)|<E \Rightarrow|x-a|<\delta$
b) $|f(x)-f(a)|>\epsilon \Rightarrow|x-a|>\delta$
c) $|x-a|>\delta|f(x)-f(a)|>E$
d) $|x-a|<\delta|f(x)-f(a)|<E$
20. The function $f(x)=x-\left|x-x^{2}\right|,-1 \leq x \leq 1$ is continuous on the interval
a) $[-1,1]$
b) $(-1,1)$
c) $[-1,0) \cup(0,1]$
d) $(-1,0) \cup(0,1)$
