CLASS : XIIth
SUBJECT : MATHS
DATE :

Topic :- CONTINUTY AND DIFFERENTIABILITY

1. Let $[x]$ denotes the greatest integer less than or equal to x and $f(x)=\left[\tan ^{2} x\right]$. Then,
a) $\lim _{x \rightarrow 0} f(x)$ does not exist
b) $f(x)$ is continuous at $x=0$
c) $f(x)$ is not differentiable at $x=0$
d) $f^{\prime}(0)=1$
2. The value of $f(0)$ so that $\frac{\left(-e^{x}+2^{x}\right)}{x}$ may be continuous at $x=0$ is
a) $\log \left(\frac{1}{2}\right)$
b) 0
c) 4
d) $-1+\log 2$
3. Let $f(x)$ be an even function. Then $f^{\prime}(x)$
a) Is an even function
b) Is an odd function
c) May be even or odd
d) None of these
4. If $f(x)=\left\{\begin{array}{c}{[\cos \pi x], x<1} \\ |x-2|, 2>x \geq 1\end{array}\right.$, then $f(x)$ is
a) Discontinuous and non-differentiable at $x=-1$ and $x=1$
b) Continuous and differentiable at $x=0$
c) Discontinuous at $x=1 / 2$
d) Continuous but not differentiable at $x=2$
5. If $f(x)=\left\{\begin{array}{c}\frac{|x+2|}{\tan ^{-1}(x+2)}, x \neq-2 \\ 2, \quad x=-2\end{array}\right.$, then $f(x)$ is
a) Continuous at $x=-2$
b) Not continuous $x=-2$
c) Differentiable at $x=-2$
d) Continuous but not derivable at $x=-2$
6. If $f(x)=|\log | x| |$, then
a) $f(x)$ is continuous and differentiable for all x in its domain
b) $f(x)$ is continuous for all x in its domain but not differentiable at $x= \pm 1$
c) $f(x)$ is neither continuous nor differentiable at $x= \pm 1$
d) None of the above
7. If $f^{\prime}(a)=2$ and $f(a)=4$, then $\lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a}$ equals
a) $2 a-4$
b) $4-2 a$
c) $2 a+4$
d) None of these
8. If $f(x)=x(\sqrt{x}+\sqrt{x+1})$, then
a) $f(x)$ is continuous but not differentiable at $x=0$
b) $\quad f(x)$ is differentiable at $x=0$
c) $f(x)$ is not differentiable at $x=0$
d) None of the above
9. If $f(x)=\left\{\begin{array}{l}a^{2}+b, b \neq 0, x \leq 1 \\ x^{2} b+a x+c, \quad x>1\end{array}\right.$, then, $f(x)$ is continuous and differentiable at $x=1$, if
a) $c=0, a=2 b$
b) $a=b, c \in R$
c) $a=b, c=0$
d) $a=b, c \neq 0$
10. For the function $f(x)=\left\{\begin{array}{l}|x-3|, x \geq 1 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}, x<1\end{array}\right.$ which one of the following is incorrect?
a) Continuous at $x=1$
b) Derivable at $x=1$
c) Continuous at $x=3$
d) Derivable at $x=3$
11. If $f: R \rightarrow R$ is defined by
$f(x)=\left\{\begin{array}{c}\frac{2 \sin x-\sin 2 x}{2 x \cos x} \\ a, \quad \text { if } x=0\end{array}\right.$, if $x \neq 0$,
Then the value of a so that f is continuous at 0 is
a) 2
b) 1
c) -1
d) 0
12. $f(x)=x+|x|$ is continuous for
a) $x \in(-\infty, \infty)$
b) $x \in(-\infty, \infty)-\{0\}$
c) Only $x>0$
d) No value of x
13. If the function
$f(x)=\left\{\begin{array}{rl}\{1+|\sin x|\}^{\frac{a}{|\sin x|}} & \quad-\frac{\pi}{6}<x<0 \\ \frac{b,}{\frac{\tan 2 x}{\tan 3 x}}, & x=0 \\ e^{0} & 0<x<\frac{\pi}{6}\end{array}\right.$
Is continuous at $x=0$
a) $a=\log _{e} b, b=\frac{2}{3}$
b) $b=\log _{e} a, a=\frac{2}{3}$
c) $a=\log _{e} b, b=2$
d) None of these
14. If $f(x)=x^{2}+\frac{x^{2}}{1+x^{2}}+\frac{x^{2}}{\left(1+x^{2}\right)^{2}}+\ldots+\frac{x^{2}}{\left(1+x^{2}\right)^{n}}+\ldots$, then at $x=0, f(x)$
a) Has no limit
b) Is discontinuous
c) Is continuous but not differentiable
d) Is differentiable
15. Let $f(x)=\left\{\begin{array}{ccc}1, & \forall & x<0 \\ 1+\sin x, & \forall & 0 \leq x \leq \pi / 2\end{array}\right.$, then what is the value of $f^{\prime}(x)$ at $x=0$?
a) 1
b) -1
c) ∞
d) Does not exist
16. The function $f(x)=x-\left|x-x^{2}\right|$ is
a) Continuous at $x=1$
b) Discontinuous at $x=1$
c) Not defined at $x=1$
d) None of the above
17. If $f(x+y+z)=f(x) \cdot f(y) \cdot f(z)$ for all x, y, z and $f(2)=4, f^{\prime}(0)=3$, then $f^{\prime}(2)$ equals
a) 12
b) 9
c) 16
d) 6
18. If $f(x)=\left|\log _{e}\right| x| |$, then $f^{\prime}(x)$ equals
a) $\frac{1}{|x|}, x \neq 0$
b) $\frac{1}{x}$ for $|x|>1$ and $\frac{-1}{x}$ for $|x|<1$
c) $\frac{-1}{x}$ for $|x|>1$ and $\frac{1}{x}$ for $|x|<1$
d) $\frac{1}{x}$ for $|x|>0$ and $-\frac{1}{x}$ for $x<0$
19. If the function $f(x)=\left\{\begin{array}{c}\frac{1-\cos x}{x^{2}}, \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$ is continuous at $x=0$, then the value of k is
a) 1
b) 0
c) $\frac{1}{2}$
d) -1
20. Function $f(x)=|x-1|+|x-2|, x \in R$ is
a) Differentiable everywhere in R
b) Except $x=1$ and $x=2$ differentiable everywhere in R
c) Not continuous at $x=1$ and $x=2$
d) Increasing in R
