

CLASS: XIIth DATE:

SOLUTIONS

SUBJECT: MATHS

DPP NO.: 5

Topic: - CONTINUITY AND DIFFERENTIABILITY

$$f'(2^{+}) = \lim_{x \to 2^{+}} \left(\frac{f(x) - f(2)}{x - 2} \right)$$
$$= \lim_{x \to 2^{+}} \frac{3x + 4 - (6 + 4)}{x - 2} = \lim_{x \to 2} \frac{3x - 6}{x - 2} = 3$$

3 **(a**)

Here,
$$f(x) = \begin{cases} \sin x, x > 0 \\ 0, x = 0 \\ -\sin x, x < 0 \end{cases}$$

$$\mathsf{RHD} = \lim_{h \to 0} \frac{\sin|0+h| - \sin(0)}{h}$$

$$=\lim_{h\to 0} \frac{\sin h}{h} = 1$$

$$LHD = \lim_{h \to 0} \frac{\sin|(0-h)| - \sin(0)}{-h}$$

$$=\frac{-\sin h}{h}=-1$$

 \therefore LHD \neq RHD at x = 0

f(x) is not derivable at x = 0

Alternate

It is clear from the graph that f(x) is not differentiable at x = 0

4 **(b**)

We have,

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} (\log_e a)^n$$

$$\Rightarrow f(x) = \sum_{n=0}^{\infty} \frac{(x \log_e a)^n}{n!} = \sum_{n=0}^{\infty} \frac{(\log_e a^x)^n}{n!}$$

 $\Rightarrow f(x) = e^{\log_e a^x} = a^x$, which is everywhere continuous and differentiable

5 (c

$$f(x) = [x] \cos \left[\frac{2x - 1}{2} \right] \pi$$

Since, [x] is always discontinuous at all integer value, hence f(x) is discontinuous for all integer value

6 **(c)**

The function f is clearly continuous for |x| > 1

We observe that

$$\lim_{x \to -1^+} f(x) = 1, \ \lim_{x \to -1^-} f(x) = \frac{1}{4}$$

Also,
$$\lim_{x \to \frac{1+}{n}} f(x) = \frac{1}{n^2}$$
 and, $\lim_{x \to \frac{1-}{n}} f(x) = \frac{1}{(n+1)^2}$

Thus, *f* is discontinuous for $x = \pm \frac{1}{n}$, n = 1, 2, 3,...

7 **(c**)

Since,
$$|f(x) - f(y)| \le (x - y)^2$$

$$\Rightarrow \lim_{x \to y} \frac{|f(x) - f(y)|}{|x - y|} \le \lim_{x \to y} |x - y|$$

$$\Rightarrow |f'(y)| \le 0$$

$$\Rightarrow f'(y) = 0$$

$$\Rightarrow f(y) = \text{constant}$$

$$\Rightarrow f(y) = 0 \Rightarrow f(1) = 0 \quad [\because f(0) = 0, \text{ given}]$$

8 **(b**)

Since $\phi(x) = 2x^3 - 5$ is an increasing function on (1, 2) such that $\phi(1) = -3$ and $\phi(2) = 11$ Clearly, between -3 and 11 there are thirteen points where $f(x) = \lceil 2x^3 - 5 \rceil$ is discontinuous

9 **(c)**

Clearly, $[x^2 + 1]$ is discontinuous at $x = \sqrt{2}$, $\sqrt{3}$, $\sqrt{4}$, $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$, $\sqrt{8}$

Note that it is right continuous at x = 1 but not left continuous at x = 3

10 **(a)**

As is evident from the graph of f(x) that it is continuous but not differentiable at x = 1

Now,

$$f''(1^{+}) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{\log_{10}(1 + h) - 0}{h}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{\log(1 + h)}{h \cdot \log_{e} 10} = \frac{1}{\log_{e} 10} = \log_{10} e$$

$$f''(1^{-}) = \lim_{h \to 0} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow f''(1^{-}) = \lim_{h \to 0} \frac{f(1 - h) - f(1)}{h}$$

$$\Rightarrow f''(1^{-}) = \lim_{h \to 0} \frac{\log_{10}(1 - h)}{h} = \lim_{h \to 0} \frac{\log_{e}(1 - h)}{h \log_{e} 10} = -\log_{10} e$$

11 **(b)**

It can be easily seen from the graph of $f(x) = |\cos x|$ that it is everywhere continuous but not differentiable at odd multiples of $\pi/2$

12 **(d)**

We have,

$$\lim_{x \to 4^{-}} f(x) = \lim_{h \to 0} f(4 - h) = \lim_{h \to 0} \frac{4 - h - 4}{|4 - h - 4|} + a$$

$$\Rightarrow \lim_{x \to 4^{-}} f(x) = \lim_{h \to 0} -\frac{h}{h} + a = a - 1$$

$$\Rightarrow \lim_{x \to 4^{-}} f(x) = \lim_{h \to 0} f(4+h) = \lim_{h \to 0} \frac{4+h-4}{|4+h-4|} + b = b+1$$

and,
$$f(4) = a + b$$

Since f(x) is continuous at x = 4. Therefore,

$$\lim_{x \to 4^{-}} f(x) = f(4) = \lim_{x \to 4^{+}} f(x)$$

$$\Rightarrow a-1=a+b=b+1 \Rightarrow b=-1 \text{ and } a=1$$

We have,

$$f(x) = \begin{cases} \frac{2^{x} - 1}{\sqrt{1 + x} - 1}, & -1 \le x < \infty, & x \ne 0 \\ k, & x = 0 \end{cases}$$

Since, f(x) is continuous everywhere

$$\lim_{x \to 0^{-}} f(x) = f(0) \quad ...(i)$$

Now,
$$\lim_{x\to 0^-} f(x) = \lim_{h\to 0} \frac{2^{(0-h)} - 1}{\sqrt{1 + (0-h)} - 1}$$

$$= \lim_{h \to 0} \frac{2^{-h} - 1}{\sqrt{1 - h} - 1}$$

$$= \lim_{h \to 0} \frac{-2^{-h} \log_e 2}{\frac{-1}{2\sqrt{1-h}}}$$
 [by L' Hospital's rule]

$$= 2 \lim_{h \to 0} 2^{-h} \log_e 2\sqrt{1-h}$$

$$= 2 \log_e 2$$

From Eq. (i),

$$f(0) = 2 \log_e 2 = \log_e 4$$

We have,

$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(-h) = \lim_{h \to 0} \frac{e^{-1/h} - 1}{e^{-1/h} + 1} = -1$$

and,

$$\lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(h) = \lim_{x \to 0} \frac{e^{1/h} - 1}{e^{1/h} + 1} = \lim_{h \to 0} \frac{e^{-1/h}}{e^{-1/h}} = 1$$

$$\therefore \lim_{x \to 0^-} f(x) \neq \lim_{x \to 0^+} f(x)$$

Hence, f(x) is not continuous at x = 0

LHL =
$$\lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} 1 + (2 - h) = 3$$

RHL =
$$\lim_{x \to 2^+} f(x) = \lim_{h \to 0} 5 - (2 + h) = 3$$
, $f(2) = 3$

Hence, f is continuous at x = 2

Now,
$$Rf''(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$

$$= \lim_{h \to 0} \frac{5 - (2 + h) - 3}{h} = -1$$

$$Lf''(2) = \lim_{h \to 0} \frac{f(2-h) - f(2)}{-h}$$

$$= \lim_{h \to 0} \frac{1 + (2 - h) - 3}{-h} = 1$$

$$\therefore Rf''(2) \neq Lf''(2)$$

$$\therefore$$
 f is not differentiable at $x = 2$

Alternate

It is clear from the graph that f(x) is continuous everywhere also it is differentiable everywhere except at x=2

We have,

$$f(x + y) = f(x)f(y)$$
 for all $x, y \in R$

Putting x = 1, y = 0, we get

$$f(0) = f(1)f(0) \Rightarrow f(0)(1 - f(1)) = 0$$

$$\Rightarrow f(1) = 1 \quad [\because f(0) \neq 0]$$

Now,

$$f'(1) = 2$$

$$\Rightarrow \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = 2$$

$$\Rightarrow \lim_{h \to 0} \frac{f(1)f(h) - f(1)}{h} = 2$$

$$\Rightarrow f(1)\lim_{h\to 0}\frac{f(h)-1}{h}=2$$

$$\Rightarrow \lim_{h \to 0} \frac{f(h) - 1}{h} = 2 \quad \text{[Using } f(1) = 1\text{]} \quad \dots (i)$$

$$\therefore f'(4) = \lim_{h \to 0} \frac{f(4+h) - f(4)}{h}$$

$$\Rightarrow f'(4) = \lim_{h \to 0} \frac{f(4)f(h) - f(4)}{h}$$

$$\Rightarrow f'(4) = \left\{ \lim_{h \to 0} \frac{f(h) - 1}{h} \right\} f(4)$$

$$\Rightarrow f'(4) = 2 f(4)$$
 [From (i)]

$$\Rightarrow f'(4) = 2 \times 4 = 8$$

18 **(d)**

We have,

$$\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{+}} g(x) = 1 \text{ and } g(1) = 0$$

So, g(x) is not continuous at x = 1 but $\lim_{x \to 1} g(x)$ exists

We have,

$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1 - h) = \lim_{h \to 0} [1 - h] = 0$$

and,

$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1+h) = \lim_{h \to 0} [1+h] = 1$$

So, $\lim_{x\to 1} f(x)$ does not exist and so f(x) is not continuous at x=1

We have,
$$gof(x) = g(f(x)) = g([x]) = 0$$
, for all $x \in R$

So, *gof* is continuous for all *x*

We have,

$$fog(x) = f(g(x))$$

$$\Rightarrow f \circ g(x) = \begin{cases} f(0), & x \in \mathbb{Z} \\ f(x^2), & x \in \mathbb{R} - \mathbb{Z} \end{cases}$$

$$\Rightarrow f \circ g(x) = \begin{cases} 0, & x \in \mathbb{Z} \\ [x^2], & x \in \mathbb{R} - \mathbb{Z} \end{cases}$$

Which is clearly not continuous

At
$$x = 1$$
,

RHD =
$$\lim_{h \to 0^+} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{2 - (1 + h) - (2 - 1)}{h} = -1$$

LHD =
$$\lim_{h \to 0^{-}} \frac{f(1-h) - f(1)}{-h}$$

$$= \lim_{h \to 0} \frac{(1-h) - (2-1)}{-h} = 1$$

Given,
$$f(x) = |x| + \frac{|x|}{x}$$

Let
$$f_1(x) = |x|$$
, $f_2(x) = \frac{|x|}{x}$

1. LHL =
$$\lim_{x \to 0^{-}} f_1(x) = \lim_{x \to 0^{-}} |x| = 0$$

And RHL
$$\lim_{x \to 0^+} f_1(x) = \lim_{x \to 0^+} |x| = 0$$

Here, LHL=RHL=f(0), $f_1(x)$ is continuous

2. LHL =
$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{h \to 0} \frac{|0 - h|}{0 - h} = -1$$

RHL =
$$\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{h \to 0} \frac{|0+h|}{h} = 1$$

$$\therefore$$
 LHL \neq RHL, $f_2(x)$ is discontinuous

Hence, f(x) is discontinuous at x = 0

ANSWER-KEY											
Q.	1	2	3		4	5	6	7	8	9	10
A.	D	С	A		В	C	С	С	В	С	A
Q.	11	12	13		14	15	16	17	18	19	20
A.	В	D	В		С	В	C	D	D	D	D