CLASS : XIIth
SOLUTIONS

## Topic :- CONTINUITY AND DIFFERENTIABILITY

1
(a)

We have, $f(x)=\left\{\begin{array}{cc}x^{2}, & x \geq 0 \\ -x^{2}, & x<0\end{array}\right.$
Clearly, $f(x)$ is differentiable for all $x>0$ and for all $x<0$. So, we check the differentiable at $x=0$
Now, (RHD at $x=0$ )
$\left(\frac{d}{d x}(x)^{2}\right)_{x=0}=(2 x)_{x=0}=0$
And (LHD at $=0$ )
$\left(\frac{d}{d x}(-x)^{2}\right)_{x=0}=(-2 x)_{x=0}=0$
$\therefore \quad($ LHD at $x=0)=($ RHD at $x=0)$
So, $f(x)$ is differentiable for all $x$ ie, the set of all points where $f(x)$ is differentiable is $(-\infty, \infty)$
Alternate
It is clear from the graph $f(x)$ is differentiable everywhere.


2
(a)

Since, $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=10$
$\Rightarrow \lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=10$
$\Rightarrow f(0)\left(\lim _{h \rightarrow 0} \frac{f(h)-1}{h}\right)=10$
$[\because f(0+h)=f(0) f(h)$, given $]$
Now, $f(0)=f(0) f(0)$
$\Rightarrow f(0)=1$
$\therefore$ From Eq. (i)
$\lim _{h \rightarrow 0} \frac{f(h)-1}{h}=10$
Now, $f^{\prime}(6)=\lim _{h \rightarrow 0} \frac{f(6+h)-f(6)}{h}$
$=\lim _{x \rightarrow 0}\left(\frac{f(h)-1}{h}\right) f(6) \quad$ [from Eq. (ii)]
$=10 \times 3=30$
3
(a)

We have,
$f^{\prime}\left(a^{+}\right)=\lim _{x \rightarrow a^{+}} \frac{f(x)-f(0)}{x-a}$
$\Rightarrow f^{\prime}\left(a^{+}\right)=\lim _{x \rightarrow a^{+}} \frac{|x-a| \phi(x)}{x-a}$
$\Rightarrow f^{\prime}\left(a^{+}\right)=\lim _{x \rightarrow a} \frac{(x-a)}{(x-a)} \phi(x) \quad[\because x>a \quad \therefore|x-a|=x-a]$
$\Rightarrow f^{\prime}\left(a^{+}\right)=\lim _{x \rightarrow a} \phi(x)$
$\Rightarrow f^{\prime}\left(a^{+}\right)=\phi(a) \quad[\because \phi(x)$ is continuous at $x=a]$
and,
$f^{\prime}\left(a^{-}\right)=\lim _{x \rightarrow a^{-}} \frac{f(x)-f(0)}{x-a}$
$\Rightarrow f^{\prime}\left(a^{-}\right)=\lim _{x \rightarrow a^{-}} \frac{|x-a| \phi(x)}{x-a}$
$\Rightarrow f^{\prime}\left(a^{-}\right)=\lim _{x \rightarrow a} \frac{(x-a) \phi(x)}{(x-a)} \quad[\because x<a \quad \therefore|x-a|=-(x-a)]$
$\Rightarrow f^{\prime}\left(a^{-}\right)=-\lim _{x \rightarrow a} \phi(x)$
$\Rightarrow f^{\prime}\left(a^{-}\right)=-\phi(a) \quad[\because \phi(x)$ is continuous at $x=a]$
4
(b)
$\mathrm{LHL}=\lim _{h \rightarrow 0}(0-h)_{e^{-\left(\frac{1}{|-h|}+\frac{1}{(-h)}\right)}}=\lim _{h \rightarrow 0}(-h)=0$
$\mathrm{RHL}=\lim _{h \rightarrow 0}(0+h)_{e}-\left(\frac{1}{|h|}+\frac{1}{(h)}\right) \quad=\lim _{h \rightarrow 0} \frac{h}{e^{2 / h}}=0$
$\mathrm{LHL}=\mathrm{RHL}=f(0)$
Therefore, $f(x)$ is continuous for all $x$
Differentiability at $x=0$
$L f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{(-h) e^{-\left(\frac{1}{h} \frac{1}{h}\right)}}{(-h)-0}=1$
$R f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{h e^{-\left(\frac{1}{\hbar}+\frac{1}{h}\right)-0}}{h-0}$
$=\lim _{h \rightarrow 0} \frac{1}{e^{2 / h}}=0$
$\Rightarrow R f^{\prime}(0) L f^{\prime}(0)$
Therefore, $f(x)$ is not differentiable at $x=0$

5
(d)

We have,
$f(x)=\left\{\begin{array}{c}3, \\ 2 x+1, \quad x<0 \\ 2 x \geq 0\end{array}\right.$
Clearly, $f$ is continuous but not differentiable at $x=0$
Now,
$f(|x|)=2|x|+1$ for all $x$
Clearly, $f(|x|)$ is everywhere continuous but not differentiable at $x=0$
7
(c)

We have,
$f(x)=|x-0.5|+|x-1|+\tan x, 0<\mathrm{x}<2$
$\Rightarrow f(x)=\left\{\begin{array}{cc}-2 x+1.5+\tan x, & 0<x<0.5 \\ 0.5+\tan x, & 0.5 \leq x<1 \\ 2 x-1.5+\tan x, & 1 \leq x<2\end{array}\right.$
It is evident from the above definition that
$L f^{\prime}(0.5) \neq R f^{\prime}(0.5)$ and $L f^{\prime}(1) \neq R f^{\prime}(1)$
Also, the function is not continuous at $=\pi / 2$. So, it cannot be differentiable thereat 8
(d)

Given, $f(x)=\left\{\begin{array}{c}\log _{(1-3 x)}(1+3 x), \text { for } x \neq 0 \\ k, \\ \text { for } x=0\end{array}\right.$
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\log (1+3 x)}{\log (1-3 x)}$
$=-\lim _{x \rightarrow 0} \frac{\log (1+3 x)}{3 x} \cdot \frac{(-3 x)}{\log (1-3 x)}$
$=-1$
And $f(0)=k$
$\because f(x)$ is continuous at $x=0$
$\therefore \quad k=-1$
9
(d)

Since $f(x)$ is differentiable at $x=c$. Therefore, it is continuous at $x=c$
Hence, $\lim _{x \rightarrow c} f(x)=f(c)$
10
(a)

Given, $f(x)=a e^{|x|}+b|x|^{2}$
We know $e^{|x|}$ is not differentiable at $x=0$ and $|x|^{2}$ is differentiable at $x=0$
$\therefore f(x)$ is differentiable at $x=0$, if $a=0$ and $b \in R$
11 (a)
We have,
$f(x)=\left\{\begin{array}{c}(x-x)(-x)=0, x<0 \\ (x+x) x=2 x^{2}, x \geq 0\end{array}\right.$

(i)

(ii)

As is evident from the graph of $f(x)$ that it is continuous and differentiable for all $x$ Also, we have
$f^{\prime \prime}(x)=\left\{\begin{array}{c}0, x<0 \\ 4 x, x \geq 0\end{array}\right.$
Clearly, $f^{\prime \prime}(x)$ is continuous for all $x$ but it is not differentiable at $x=0$
12
(b)

Given, $f(x)=\left\{\begin{array}{c}\frac{x-1}{2 x^{2}-7 x+5}, \quad x \neq 1 \\ -\frac{1}{3}, \quad x=1\end{array}\right.$
$f(x)= \begin{cases}\frac{1}{2 x-5}, & x \neq 1 \\ -\frac{1}{3}, & x=1\end{cases}$
$f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
$=\lim _{h \rightarrow 0} \frac{\frac{1}{2(1+h)-5}-\left(-\frac{1}{3}\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{\frac{1}{2 h-3}+\frac{1}{3}}{h}=\lim _{h \rightarrow 0} \frac{3+2 h-3}{3 h(2 h-3)}=-\frac{2}{9}$
$L f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}$
$=\lim _{h \rightarrow 0} \frac{\frac{1}{2(1-h)-5}-\left(-\frac{1}{3}\right)}{-h}$
$=\lim _{h \rightarrow 0}-\frac{2}{3(2 h+3)}=-\frac{2}{9}$
$\therefore f^{\prime}(1)=-\frac{2}{9}$
13 (b)
$f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{f(1+h)}{h}-\lim _{h \rightarrow 0} \frac{f(1)}{h}$
Given, $\lim _{h \rightarrow 0} \frac{f(1+h)}{h}=5$
So, $\lim _{h \rightarrow 0} \frac{f(1)}{h}$ must be finite as $f^{\prime}(1)$ exist and $\lim _{h \rightarrow 0} \frac{f(1)}{h}$ can be finite only, if $f(1)=0$ and $\lim _{h \rightarrow 0} \frac{f(1)}{h}=0$
So, $f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)}{h}=5$
14 (c)
Since, $f(x)$ is continuous for every value of $R$ except $\{-1,-2\}$. Now, we have to check that points At $x=-2$
LHL $=\lim _{h \rightarrow 0} \frac{(-2-h)+2}{(-2-h)^{2}+3(-2-h)+2}$
$=\lim _{h \rightarrow 0} \frac{-h}{h^{2}+h}=-1$
RHL $=\lim _{h \rightarrow 0} \frac{(-2+h)+2}{(-2+h)^{2}+3(-2+h)+2}$
$=\lim _{h \rightarrow 0} \frac{h}{h^{2}-h}=-1$
$\Rightarrow$ LHL $=$ RHL $=f(-2)$
$\therefore$ It is continuous at $x=-2$
Now, check for $x=-1$
LHL $=\lim _{h \rightarrow 0} \frac{(-1-h)+2}{(-1-h)^{2}+3(-1-h)+2}$
$=\lim _{h \rightarrow 0} \frac{1-h}{h^{2}-h}=\infty$
RHL $=\lim _{h \rightarrow 0} \frac{(-1+h)+2}{(-1+h)^{2}+3(-1+h)+2}$
$=\lim _{h \rightarrow 0} \frac{1+h}{h^{2}+h}=\infty$
$\Rightarrow$ LHL $=$ RHL $\neq f(-1)$
$\therefore$ It is not continuous at $x=-1$
The required function is continuous in $R-\{-1\}$
(d)
$f(0)=\lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right)^{2}}{\sin \left(\frac{x}{a}\right) \log \left(1+\frac{x}{4}\right)}$
$\Rightarrow \quad \lim _{x \rightarrow 0}\left(\frac{e^{x}-1}{x}\right)^{2} \cdot \frac{\frac{x}{a} \cdot a}{\sin \frac{x}{a}} \cdot \frac{\frac{x}{4} \cdot 4}{\log \left(1+\frac{x}{4}\right)}=12$
$\Rightarrow \quad 1^{2} \cdot a \cdot 4=12$
$\Rightarrow \quad a=3$
16
(b)

We have,
$f(x)=\frac{x}{1+x}+\frac{x}{(x+1)(2 x+1)}+\frac{x}{(2 x+1)(3 x+1)}+\ldots \infty$
$\Rightarrow f(x)=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{x}{((r-1) x+1)(r x+1)}$, for $x \neq 0$
$\Rightarrow f(x)=\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left\{\frac{1}{(r-1) x+1}-\frac{1}{r x+1}\right\}$, for $x \neq 0$
$\Rightarrow f(x)=\lim _{n \rightarrow \infty}\left\{1-\frac{2}{n x+1}\right\}=1$, for $x \neq 0$
For $x=0$, we have $f(x)=0$
Thus, we have $f(x)= \begin{cases}1, & x \neq 0 \\ 0, & x=0\end{cases}$
Clearly, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x) \neq f(0)$
So, $f(x)$ is not continuous at $x=0$
17
(b)

If possible, let $f(x)+g(x)$ be continuous. Then, $\{f(x)+g(x)\}-f(x)$ must be continuous $\Rightarrow g(x)$ must be continuous
This is a contradiction to the given fact that $g(x)$ is discontinuous
Hence, $f(x)+g(x)$ must be discontinuous
18
(c)

We have,
$f(x+y)=f(x) f(y)$ for all $x, y \in R$
$\therefore f(0)=f(0) f(0)$
$\Rightarrow f(0)\{f(0)-1\}=0$
$\Rightarrow f(0)=1 \quad[\because f(0) \neq 1]$
Now,
$f^{\prime}(0)=0$
$\Rightarrow \lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=2$
$\Rightarrow \lim _{h \rightarrow 0} \frac{f(h)-1}{h}=2 \quad[\because f(0)=1]$
$\therefore f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x) f(h)-f(x)}{h} \quad[\because f(x+y)=f(x) f(y)]$
$\Rightarrow f^{\prime}(x)=f(x)\left\{\lim _{h \rightarrow 0} \frac{f(h)-1}{h}\right\}=2 f(x) \quad[$ Using (i)]
19
(b)

We have,
$f(x)=\left\{\begin{array}{cc}\frac{x^{2}}{|x|}, & x \neq 0 \\ 0, & x=0\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{c}\frac{x^{2}}{2}=x, \quad x>0 \\ 0, \quad x=0 \\ \frac{x^{2}}{-x}=-x, \quad x<0\end{array}\right.$
$\Rightarrow \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}-x=0, \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} x=0$ and $f(0)=0$
So, $f(x)$ is continuous at $x=0$. Also, $f(x)$ is continuous for all other values of $x$ Hence, $f(x)$ is everywhere continuous
Clearly, $L f^{\prime}(0)=-1$ and $R f^{\prime}(0)=1$
Therefore, $f(x)$ is not differentiable at $x=0$
20
(b)

Since $f(x)$ is continuous at $x=0$

$$
\begin{equation*}
\therefore \lim _{x \rightarrow 0} f(x)=f(0) \Rightarrow f(0)=2 \tag{i}
\end{equation*}
$$

Now, using L' Hospital's rule, we have
$\lim _{x \rightarrow 0} \frac{\int_{0}^{x} f(u) d u}{x}=\lim _{x \rightarrow 0} \frac{f(x)}{1}=f(0) \quad[\because f(x)$ is continuous at $x=0]$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\int_{0}^{x} f(u) d u}{x}=2 \quad[$ Using (i)]

| ANSWER-KEY |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | A | A | A | B | D | A | C | D | D | A |
|  |  |  |  |  |  |  |  |  |  |  |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | A | B | B | C | D | B | B | C | B | B |
|  |  |  |  |  |  |  |  |  |  |  |

