CLASS : XIIth

Topic :- CONTINUITY AND DIFFERENTIABILITY

1
(b)

Clearly, $f(x)$ is differentiable for all non-zero values of x. For $x \neq 0$, we have
$f^{\prime}(x)=\frac{x e^{-x^{2}}}{\sqrt{1-e^{-x^{2}}}}$
Now,
(LHD at $x=0)=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{x-0}$
$\Rightarrow($ LHD at $x=0)=\lim _{h \rightarrow 0} \frac{\sqrt{1-e^{-h^{2}}}}{-h}=\lim _{h \rightarrow 0}-\frac{\sqrt{1-e^{-h^{2}}}}{h}$
$\Rightarrow($ LHD at $x=0)=-\lim _{h \rightarrow 0} \sqrt{\frac{e^{h^{2}}-1}{h^{2}}} \times \frac{1}{\sqrt{e^{h^{2}}}}=-1$
and, (RHD at $x=0)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{h \rightarrow 0} \frac{\sqrt{1-e^{-h^{2}}}-0}{h}$
$\Rightarrow($ RHD at $x=0)=\lim _{h \rightarrow 0} \sqrt{\frac{e^{h^{2}}-1}{h^{2}}} \times \frac{1}{\sqrt{e^{h^{2}}}}=1$
So, $f(x)$ is not differentiable at $x=0$
Hence, the set of points of differentiability of $f(x)$ is $(-\infty, 0) \cup(0, \infty)$
2
(c)

Since $f(x)$ is continuous at $x=0$
$\therefore f(0)=\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$
3 (d)
For $f(x)$ to be continuous everywhere, we must have,
$f(0)=\lim _{x \rightarrow 0} f(x)$
$\Rightarrow f(0)=\lim _{x \rightarrow 0} \frac{2-(256-7 x)^{1 / 8}}{(5 x+32)^{1 / 5}-2} \quad\left[\right.$ Form $\left.\frac{0}{0}\right]$
$\Rightarrow f(0)=\lim _{x \rightarrow 0} \frac{\frac{7}{8}(256-7 x)^{-\frac{7}{8}}}{(5 x+32)^{-4 / 5}}=\frac{7}{8} \times \frac{2^{-7}}{2^{-4}}=\frac{7}{64}$
4 (b)
We have,
$f(x)=|x|^{3}=\left\{\begin{array}{cc}x^{3}, & x \geq 0 \\ -x^{3}, & x<0\end{array}\right.$
$\therefore($ LHD at $x=0)=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0}-\frac{x^{3}}{x}=0$
and,
$\therefore($ RHD at $x=0)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{3}}{x}=0$
Clearly, $($ LHD at $x=0)=($ RHD at $x=0)$
Hence, $f(x)$ is differentiable at $x=0$ and its derivative at $x=0$ is 0
5
(a)
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left(\frac{4^{x}-1}{x}\right)^{3} \times \frac{\left(\frac{x}{a}\right)}{\sin \left(\frac{x}{a}\right)} \cdot \frac{a x^{2}}{\log \left(1+\frac{1}{3} x^{2}\right)}$
$=(\log 4)^{3} \cdot 1 \cdot a \lim _{x \rightarrow 0}\left(\frac{x^{2}}{\frac{1}{3} x^{2}-\frac{1}{18} x^{4}+\ldots}\right)$
$=3 a(\log 4)^{3}$
$\because \quad \lim _{x \rightarrow 0} f(x)=f(0)$
$\Rightarrow 3 a(\log 4)^{3}=9(\log 4)^{3}$
$\Rightarrow \quad a=3$
6
(d)

We have,
$f(x)=|[x] x|$ for $-1<x \leq 2$
$\Rightarrow f(x)=\left\{\begin{array}{cc}-x, & -1<x<0 \\ 0, & 0 \leq x<1 \\ x, & 1 \leq x<2 \\ 2 x, & x=2\end{array}\right.$
It is evident from the graph of this function that it is continuous but not differentiable at $x=0$. Also, it is discontinuous at $x=1$ and non-differentiable at $x=2$
7
(c)

Given, $f(x)=\left[x^{3}-3\right]$
Let $g(x)=x^{3}-x$ it is in increasing function
$\therefore g(1)=1-3=-2$
and $g(2)=8-3=5$
Here, $f(x)$ is discontinuous at six points
8 (b)
Given, $y=\cos ^{-1} \cos (x-1), x>0$
$\Rightarrow \quad y=x-1, \quad 0 \leq x-1 \leq \pi$
$\therefore y=x-1, \quad 1 \leq x \leq \pi+1$
At $x=\frac{5 \pi}{4} \in[1, \pi+1]$
$\Rightarrow \frac{d y}{d x}=1 \Rightarrow\left(\frac{d y}{d x}\right)_{x=\frac{5 \pi}{4}}=1$
9
(d)

We have,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x)+f(h)-f(x)}{h} \quad[\because f(x+y)=f(x)+f(y)]$
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(h)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} g(h)}{h}$
$\Rightarrow f^{\prime}(x)=0 \times g(0)=0 \quad\left[\begin{array}{l}\because g \text { is continuous } \\ \therefore \lim _{h \rightarrow 0} g(h)=g(0)\end{array}\right]$

$10 \quad$ (b)

Using Heine's definition of continuity, it can be shown that $f(x)$ is everywhere discontinuous
11 (b)
For $x \neq-1$, we have
$f(x)=1-2 x+3 x^{2}-4 x^{3}+\ldots \infty$
$\Rightarrow f(x)=(1+x)^{-2}=\frac{1}{(1+x)^{2}}$
Thus, we have
$f(x)=\left\{\begin{array}{cc}\frac{1}{(1+x)^{2}}, & \quad x \neq-1 \\ 1, & x=-1\end{array}\right.$
We have, $\lim _{x \rightarrow-1^{-}} f(x) \rightarrow \infty$ and $\lim _{x \rightarrow-1^{-}} f(x) \rightarrow \infty$
So, $f(x)$ is not continuous at $x=-1$
Consequently, it is not differentiable there at
12
(b)

At $x=a$,
LHL $=\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a} 2 a-x=a$
And RHL $=\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a} 3 x-2 a=a$
And $f(a)=3(a)-2 a=a$
$\therefore \mathrm{LHL}=\mathrm{RHL}=f(a)$
Hence, it is continuous at $x=a$
Again, at $x=a$
$\mathrm{LHD}=\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}$

$$
=\lim _{h \rightarrow 0} \frac{2 a-(a-h)-a}{-h}=-1
$$

and RHD $=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
$=\lim _{h \rightarrow 0} \frac{3(a+h)-2 a-a}{h}=3$
$\therefore \quad$ LHD \neq RHD
Hence, it is not differentiable at $x=a$

13
 (b)

We have,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x) f(h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x)=f(x) \lim _{h \rightarrow 0} \frac{f(h)-1}{h}$
$\Rightarrow f^{\prime}(x)=f(x) \lim _{h \rightarrow 0} \frac{1+(\sin 2 h) g(h)-1}{h}$
$\Rightarrow f^{\prime}(x)=f(x) \lim _{h \rightarrow 0} \frac{\sin 2 h}{h} \times \lim _{h \rightarrow 0} g(h)=2 f(x) g(0)$
14 (c)
If $-1 \leq x \leq 1$, then $0 \leq x \sin \pi x \leq 1 / 2$
$\therefore f(x)=[x \sin \pi x]=0$, for $-1 \leq x \leq 1$
If $1<x<1+h$, where h is a small positive real number, then
$\pi<\pi x<\pi+\pi h \Rightarrow-1<\sin \pi x<0 \Rightarrow-1<x \sin \pi x<0$
$\therefore f(x)=[x \sin \pi x]=-1$ in the right neighbourhood of $x=1$
Thus, $f(x)$ is constant and equal to zero in $[-1,1]$ and so $f(x)$ is differentiable and hence continuous on $(-1,1)$
At $x=1, f(x)$ is discontinuous because
$\Rightarrow \lim _{x \rightarrow 1^{-}} f(x)=0$ and $\lim _{x \rightarrow 1^{+}} f(x)=-1$
Hence, $f(x)$ is not differentiable at $x=1$
15
(d)

We have,
$($ LHD at $x=0)=\left\{\frac{d}{d x}(1)\right\}_{x=0}=0$
(RHD at $x=0)=\left\{\frac{d}{d x}(1+\sin x)\right\}_{x=0}=\cos 0=1$
Hence, $f^{\prime}(x)$ at $x=0$ does not exist
16
(c)

Here, $f^{\prime}(x)=\left\{\begin{array}{c}2 b x+a, x \geq-1 \\ 2 a, \quad x<-1\end{array}\right.$
Given, $f^{\prime}(x)$ is continuous everywhere
$\therefore \lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{-}} f(x)$
$\Rightarrow-2 b+a=-2 a$
$\Rightarrow 3 a=2 b$
$\Rightarrow a=2, \quad b=3$
or $a=-2, \quad b=-3$

17
 (b)

We have,
$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\log \cos x}{\log \left(1+x^{2}\right)}$
$\Rightarrow \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\log (1-1+\cos x)}{\log \left(1+x^{2}\right)} \cdot \frac{1-\cos x}{1-\cos x}$
$\Rightarrow \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\log \{1-(1-\cos x)\}}{1-\cos x} \cdot \frac{1-\cos x}{\log \left(1+x^{2}\right)}$
$\Rightarrow \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=-\lim _{x \rightarrow 0} \log \frac{[1-(1-\cos x)]}{-(1-\cos x)} \times \frac{2 \sin ^{2} \frac{x}{2}}{4\left(\frac{x}{2}\right)^{2}} \times \frac{x^{2}}{\log \left(1+x^{2}\right)}$
$\Rightarrow \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=-\frac{1}{2}$
Hence, $f(x)$ is differentiable and hence continuous at $x=0$
18
(a)

Since $f(x)$ is continuous at $x=1$. Therefore,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \Rightarrow A-B=3 \Rightarrow A=3+B$
If $f(x)$ is continuous at $x=2$, then
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x) \Rightarrow 6=4 B-A$
Solving (i) and (ii) we get $B=3$
As $f(x)$ is not continuous at $x=2$. Therefore, $B \neq 3$
Hence, $A=3+B$ and $B \neq 3$
19
(a)

We have,
$f(x)=\left\{\begin{array}{c}x-4, \quad x \geq 4 \\ -(x-4), \quad 1 \leq x<4 \\ \left(x^{3} / 2\right)-x^{2}+3 x+(1 / 2), \quad x<1\end{array}\right.$
Clearly, $f(x)$ is continuous for all x but it is not differentiable at $x=1$ and $x=4$
20
(a)

It is given that $f(x)$ is continuous at $x=1$
$\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$
$\Rightarrow \lim _{x \rightarrow 1^{-}} a[x+1]+b[x-1]=\lim _{x \rightarrow 1^{+}} a[x+1]+b[x-1]$
$\Rightarrow a-b=2 a+0 \times b$
$\Rightarrow a+b=0$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | B | C | D | B | A | D | C | B | D | B |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | B | B | B | C | D | C | B | A | A | A |
| | | | | | | | | | | |

