

CLASS : XIIth DATE :

SOLUTIONS

SUBJECT : MATHS DPP NO. : 9

Topic :- CONTINUITY AND DIFFERENTIABILITY

1 **(b)**

If a function f(x) is continuous at x = a, then it may or may not be differentiable at x = a \therefore Option (b) is correct 2 (c) Let f(x) = |x - 1| + |x - 3| $= \begin{cases} x-1 + x-3 & , x \ge 3\\ x-1+3-x, & 1 \le x < 3\\ 1-x & +3-x, & x \le 1 \end{cases}$ $= \begin{cases} 2x - 4, x \ge 3\\ 2, 1 \le x < 3\\ 4 - 2x, x \le 1 \end{cases}$ At x = 2, function is f(x) = 2 $\Rightarrow f'(x) = 0$ 3 (d) We have, $f(x) = \begin{cases} (x+1) e^{-\left(\frac{1}{x} + \frac{1}{x}\right)} = (x+1), & x < 0\\ (x+1) e^{-\left(\frac{1}{x} + \frac{1}{x}\right)} = (x+1)e^{-2/x}, & x > 0 \end{cases}$ Clearly, f(x) is continuous for all $x \neq 0$ So, we will check its continuity at x = 0We have, $(LHL at x = 0) = \lim f(x) = \lim (x + 1) = 1$ $x \rightarrow 0$ $x \rightarrow 0^{-1}$ (RHL at x = 0) = $\lim_{x \to 0^+} f(x) = \lim_{x \to 0} (x+1) e^{-2/x} = \lim_{x \to 0} \frac{x+1}{e^{2/x}} = 0$ $\therefore \lim f(x) \neq \lim$ $x \rightarrow 0^{-}$ $x \rightarrow 0^+ f(x)$ So, f(x) is not continuous at x = 0Also, f(x) assumes all values from f(-2) to f(2) and f(2) = 3/e is the maximum value of f(x)4 (c) Since, it is a polynomial function, so it is continuous for every value of x except at x = 2

 $LHL = \lim x - 1$ $x \rightarrow 2^{-}$ $= \lim 2 - h - 1 = 1$ $h \rightarrow 0$ $RHL = \lim 2x - 3 = \lim 2(2 + h) - 3 = 1$ $x \rightarrow 2^{\mp}$ $h \rightarrow 0$ And f(2) = 2(2) - 3 = 1 \therefore LHL+RHL = f(2)Hence, f(x) is continuous for all real values of x 5 (c) Continuity at x = 0 $LHL = \lim_{x \to 0^{-}} \frac{\tan x}{x} = \lim_{h \to 0^{-}} \frac{-\tan h}{-h} = 1$ $\operatorname{RHL} = \lim_{x \to 0^+} \frac{\tan x}{x} = \lim_{h \to 0} \frac{\tan h}{h} = 1$ \therefore LHL=RHL = f(0) = 1, it is continuous Differentiability at x = 0LHD = $\lim_{h \to 0} \frac{f(0-h) - f(0)}{-h} = \lim_{h \to 0} \frac{\frac{\tan(-h)}{-h} - 1}{-h}$ $=\lim_{h\to 0}\frac{+\frac{h^2}{3}+\frac{2h^4}{15}+...}{-h}=0$ $h \rightarrow 0$ RHD = $\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{\frac{\tan h}{h} - 1}{h}$ $= \lim_{h \to 0} \frac{\frac{h^2}{3} + \frac{2h^4}{15} + \dots}{-h} = 0$ *h*→0 ∴ LHD=RHD Hence, it is differentiable. **(b)** 6 We have, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} (x - 1) = 0$ $x \rightarrow 1^{-}$ and. $\lim f(x) = \lim (x^3 - 1) = 0$. Also, f(1) = 1 - 1 = 0 $x \rightarrow 1^+$ $x \rightarrow 1$ So, f(x) is continuous at x = 1Clearly, (f'(1)) = 3 and Rf'(1) = 1Therefore, f(x) is not differentiable at x = 17 (d)

$$f(x) = \begin{cases} \frac{x^2 - x}{x^2 - x} = 1, & \text{if } x < 0 \text{ or } x > 1\\ -\frac{(x^2 - x)}{x^2 - x} = -1, & \text{if } 0 < x < 1\\ 1, & \text{if } x = 0\\ -1, & \text{if } x = 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 1, & \text{if } x \le 0 \text{ or } x > 1\\ -1, & \text{if } 0 < x \le 1 \end{cases}$$

Now,
$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0} 1 = 1 \text{ and, } \lim_{x \to 0^+} f(x) = \lim_{x \to 0} -1 = -1$$

Clearly,
$$\lim_{x \to 0^-} f(x) \neq \lim_{x \to 0^+} f(x)$$

So, $f(x)$ is not continuous at $x = 0$. It can be easily seen that it is not continuous

So, f(x) is not continuous at x = 0. It can be easily seen that it is not continuous at x = 18 **(b)**

We have,

f(x) = |x - 1| + |x - 3| $\Rightarrow f(x) = \begin{cases} -(x - 1) - (x - 3), & x < 1\\ (x - 1) - (x - 3), & 1 \le x < 3\\ (x - 1) + (x - 3), & x \ge 3 \end{cases}$ $\Rightarrow f(x) = \begin{cases} -2x + 4, & x < 1 \\ 2, & 1 \le x < 3 \\ 2x - 4, & x \ge 3 \end{cases}$ Since, f(x) = 2 for $1 \le x < 3$. Therefore f'(x) = 0 for all $x \in (1, 3)$ Hence, f'(x) = 0 at x = 29 (d) We have, Lf'(0) = 0 and $Rf'(0) = 0 + \cos 0^{\circ} = 1$ $\therefore Lf'(0) \neq Rf'(0)$ Hence, f'(x) does not exist at x = 010 (c) Given, $g(x) = \frac{(x-1)^n}{\log \cos^m(x-1)}$; 0 < x < 2, $m \neq 0$, *n* are integers and $|x-1| = \begin{cases} x-1; \ x \ge 1\\ 1-x; \ x < 1 \end{cases}$ The left hand derivative of |x - 1| at x = 1 is p = -1Also, lim g(x) = p = -1 $x \rightarrow 1^+$ $\Rightarrow \lim_{h \to 0} \frac{(1+h-1)^n}{\log \cos^m (1+h-1)} = -1$ $\Rightarrow \lim_{h \to 0} \frac{h^n}{m \log \cos h} = -1$ $\Rightarrow \lim_{h \to 0} \frac{n \cdot h^{n-1}}{m \frac{1}{\cos h} (-\sin h)} = -1$ [using L 'Hospital's rule]

$$\Rightarrow \left(\frac{n}{m}\right)\lim_{h\to 0} \frac{h^{n-2}}{\left(\frac{\tan h}{h}\right)} = 1$$

$$\Rightarrow n = 2 \text{ and } \frac{n}{m} = 1$$

$$\Rightarrow m = n = 2$$

11 (c)
Given, $f(x) = \frac{2x^2 + 7}{(x^2 - 1)(x + 3)}$
Since, at $x = 1, -1, -3, f(x) = \infty$
Hence, function is discontinuous
13 (a)
LHL = $\lim_{x\to 1^-} f(x) = \lim_{h\to 0} [1 - (1 - h)^2] = 0$
RHL = $\lim_{x\to 1^+} f(x) = \lim_{h\to 0} \{1 + (1 + h)^2\} = 2$
Also, $f(1) = 0$

$$\Rightarrow \text{ RHL $\neq \text{LHL} = f(1)$
Hence, $f(x)$ is not continuous at $x = 1$
14 (c)
It is clear from the graph that minimum $f(x)$ is
 $y = -x + 1$
 $y = 1$$$

 $f(x) = x + 1, \qquad \forall \ x \in R$

Hence, it is a straight line, so it is differentiable everywhere 15 (c) π

Since,
$$f(x)$$
 is continuous at $x = \frac{\pi}{2}$

$$\lim_{x \to \frac{\pi^{-1}}{2}} (mx + 1) = \lim_{x \to \frac{\pi^{+}}{2}} (\sin x + n)$$

$$\Rightarrow m\frac{\pi}{2} + 1 = \sin\frac{\pi}{2} + n$$

$$\Rightarrow \frac{m\pi}{2} = n$$
16 (a)

This function is continuous at x = 0, then

$$\lim_{x \to 0} \frac{\log_{e}(1 + x^{2} \tan x)}{\sin x^{3}} = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{\log_{e} \left\{ 1 + x^{2} \left(x + \frac{x^{3}}{3} + ... \right) \right\}}{x^{3} - \frac{x^{9}}{3!} + \frac{x^{15}}{5!} - ...} = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{\log_{e}(1 + x^{3})}{x^{3} - \frac{x^{3}}{3!} + \frac{x^{15}}{5!} - \dots} = f(0)$$
[reglecting higher power of x in x²tan x]

$$\Rightarrow \lim_{x \to 0} \frac{x^{3} - \frac{x^{4}}{2} + \frac{x^{3}}{3} - \dots}{x^{3} + \frac{x^{3}}{3!} + \frac{x^{15}}{5!} - \dots} = f(0)$$

$$\Rightarrow 1 = f(0)$$
17 (a)
Given, f(x) is continuous at x = 0

$$\therefore \lim_{x \to 0} \lim_{x \to 0} \frac{1}{x} = (0)^{p} \sin \infty = 0, \text{ when, } 0
Now, RHD = $\lim_{h \to 0} \frac{n^{p} \sin n^{2}}{h} = \lim_{h \to 0} h^{p-1} \sin \frac{1}{h}$
LHD = $\lim_{h \to 0} \frac{(-h)^{p} \sin (-\frac{1}{2}) - 0}{-h}$
= $\lim_{h \to 0} (-1)^{p} h^{p-1} \sin \frac{1}{h}$
Since, f(x) is not differentiable at x = 0

$$\therefore p \leq 1 \dots (i)$$
From Eqs.(i) and (iii), $0
18 (a)
We have,
$$\lim_{x \to 0} f(x) = \operatorname{continuous at } x = 0. f(x) \text{ is also derivable at } x = 0, \text{ because}$$

$$\lim_{x \to 0} \frac{f(x) = -\pi - x}{x^{2} - x} = \lim_{x \to 0} \frac{\sin x^{2}}{x^{2}} = 1 \text{ exists finitely}$$
19 (a)
A function f on R into itself is continuous at a point a in R, iff for each $\in > 0$ there exist $\delta > 0$, such that

$$|f(x) - f(\alpha)| < \in \Rightarrow |x - a| < \delta$$

20 (a)
We have,

$$|x_{1}(x) = -|x - x^{2}|, \quad -1 \leq x < 0$$

$$\Rightarrow f(x) = \left\{ \frac{2x - x^{2}}{x^{2}}, \quad -1 \leq x < 0$$

$$\Rightarrow f(x) = \left\{ \frac{2x - x^{2}}{x^{2}}, \quad -1 \leq x < 0$$

$$\Rightarrow f(x) = \left\{ \frac{2x - x^{2}}{x^{2}}, \quad -1 \leq x < 0$$

Also,$$$

 $\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1} 2x - x^{2} = -2 - 1 = -3 = f(-1)$ and, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{2} = 1 = f(1)$ So, f(x) is right continuous at x = -1 and left continuous at x = 1Hence, f(x) is continuous on [-1, 1]

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	C	D	С	С	В	D	В	D	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	C	А	С	С	А	А	А	А	А