CLASS : XIIth

DATE :
SOLUTIONS
SUBJECT : MATHS
DPP NO. : 9

Topic :- CONTINUITY AND DIFFERENTIABILITY

1
(b)

If a function $f(x)$ is continuous at $x=a$, then it may or may not be differentiable at $x=a$
\therefore Option (b) is correct
2
(c)

Let $f(x)=|x-1|+|x-3|$
$=\left\{\begin{array}{c}x-1+x-3 \quad, x \geq 3 \\ x-1+3-x, \quad 1 \leq x<3 \\ 1-x+3-x, \quad x \leq 1\end{array}\right.$
$=\left\{\begin{array}{l}2 x-4, x \geq 3 \\ 2,1 \leq x<3 \\ 4-2 x, x \leq 1\end{array}\right.$
At $x=2$, function is
$f(x)=2$
$\Rightarrow f^{\prime}(x)=0$
3
(d)

We have,
$f(x)=\left\{\begin{array}{l}(x+1) e^{-\left(\frac{1}{x}+\frac{1}{x}\right)}=(x+1), \quad x<0 \\ (x+1) e^{-\left(\frac{1}{x}+\frac{1}{x}\right)}=(x+1) e^{-2 / x}, \quad x>0\end{array}\right.$
Clearly, $f(x)$ is continuous for all $x \neq 0$
So, we will check its continuity at $x=0$
We have,
$(\operatorname{LHL}$ at $x=0)=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}(x+1)=1$
$($ RHL at $x=0)=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0}(x+1) e^{-2 / x}=\lim _{x \rightarrow 0} \frac{x+1}{e^{2 / x}}=0$
$\therefore \lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+} f(x)}$
So, $f(x)$ is not continuous at $x=0$
Also, $f(x)$ assumes all values from $f(-2)$ to $f(2)$ and $f(2)=3 / e$ is the maximum value of $f(x)$
4 (c)
Since, it is a polynomial function, so it is continuous for every value of x except at $x=2$

$$
\mathrm{LHL}=\lim _{x \rightarrow 2^{-}} x-1
$$

$$
=\lim _{h \rightarrow 0} 2-h-1=1
$$

RHL $=\lim _{x \rightarrow 2^{\mp}} 2 x-3=\lim _{h \rightarrow 0} 2(2+h)-3=1$
And $\quad f(2)=2(2)-3=1$
$\therefore \mathrm{LHL}+\mathrm{RHL}=f(2)$
Hence, $f(x)$ is continuous for all real values of x
5 (c)

Continuity at $\boldsymbol{x}=\mathbf{0}$
LHL $=\lim _{x \rightarrow 0^{-}} \frac{\tan x}{x}=\lim _{h \rightarrow 0} \frac{-\tan h}{-h}=1$
RHL $=\lim _{x \rightarrow 0^{+}} \frac{\tan x}{x}=\lim _{h \rightarrow 0} \frac{\tan h}{h}=1$
\therefore LHL $=$ RHL $=f(0)=1$, it is continuous
Differentiability at $\boldsymbol{x}=\mathbf{0}$
$\mathrm{LHD}=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\lim _{h \rightarrow 0}^{\frac{\tan (-h)}{-h}-1}-h$
$=\lim _{h \rightarrow 0} \frac{+\frac{h^{2}}{3}+\frac{2 h^{4}}{15}+\ldots}{-h}=0$
RHD $=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0}^{\frac{\tan h}{h}-1}$
$=\lim _{h \rightarrow 0} \frac{\frac{h^{2}}{3}+\frac{2 h^{4}}{15}+\ldots}{-h}=0$
\therefore LHD $=$ RHD
Hence, it is differentiable.
6
(b)

We have,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}(x-1)=0$
and,
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left(x^{3}-1\right)=0$. Also, $f(1)=1-1=0$
So, $f(x)$ is continuous at $x=1$
Clearly, $\left(f^{\prime}(1)\right)=3$ and $R f^{\prime}(1)=1$
Therefore, $f(x)$ is not differentiable at $x=1$
7
(d)

We have,

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{c}
\frac{x^{2}-x}{x^{2}-x}=1, \quad \text { if } x<0 \text { or } x>1 \\
-\frac{\left(x^{2}-x\right)}{x^{2}-x}=-1, \quad \text { if } 0<x<1 \\
1, \quad \text { if } x=0 \\
-1, \quad \text { if } x=1
\end{array}\right. \\
& \Rightarrow f(x)=\left\{\begin{array}{c}
1, \text { if } x \leq 0 \text { or } x>1 \\
-1, \text { if } 0<x \leq 1
\end{array}\right.
\end{aligned}
$$

Now,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0} 1=1$ and, $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0}-1=-1$
Clearly, $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$
So, $f(x)$ is not continuous at $x=0$. It can be easily seen that it is not continuous at $x=1$
8
(b)

We have,
$f(x)=|x-1|+|x-3|$
$\Rightarrow f(x)=\left\{\begin{array}{cc}-(x-1)-(x-3), & x<1 \\ (x-1)-(x-3), & 1 \leq x<3 \\ (x-1)+(x-3), & x \geq 3\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{array}{rlr}-2 x+4, & x<1 \\ 2, & 1 \leq x<3 \\ 2 x-4, & x \geq 3\end{array}\right.$
Since, $f(x)=2$ for $1 \leq x<3$. Therefore $f^{\prime}(x)=0$ for all $x \in(1,3)$
Hence, $f^{\prime}(x)=0$ at $x=2$
9
(d)

We have,
$L f^{\prime}(0)=0$ and $R f^{\prime}(0)=0+\cos 0^{\circ}=1$
$\therefore L f^{\prime}(0) \neq R f^{\prime}(0)$
Hence, $f^{\prime}(x)$ does not exist at $x=0$
10 (c)
Given, $g(x)=\frac{(x-1)^{n}}{\log \cos ^{m}(x-1)} ; 0<x<2, \quad m \neq 0, \quad n$ are integers and $|x-1|= \begin{cases}x-1 ; & x \geq 1 \\ 1-x ; & x<1\end{cases}$
The left hand derivative of $|x-1|$ at $x=1$ is $p=-1$
Also, $\lim _{x \rightarrow 1^{+}} g(x)=p=-1$
$\Rightarrow \lim _{h \rightarrow 0} \frac{(1+h-1)^{n}}{\log \cos ^{m}(1+h-1)}=-1$
$\Rightarrow \lim _{h \rightarrow 0} \frac{h^{n}}{m \log \cos h}=-1$
$\Rightarrow \lim _{h \rightarrow 0} \frac{n . h^{n-1}}{m \frac{1}{\cos h}(-\sin h)}=-1$
[using L'Hospital's rule]
$\Rightarrow\left(\frac{n}{m}\right) \lim _{h \rightarrow 0} \frac{h^{n-2}}{\left(\frac{\tan h}{h}\right)}=1$
$\Rightarrow n=2$ and $\frac{n}{m}=1$
$\Rightarrow m=n=2$
11 (c)
Given, $f(x)=\frac{2 x^{2}+7}{\left(x^{2}-1\right)(x+3)}$
Since, at $x=1,-1,-3, f(x)=\infty$
Hence, function is discontinuous
13 (a)
$\mathrm{LHL}=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0}\left[1-(1-h)^{2}\right]=0$
RHL $=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0}\left\{1+(1+h)^{2}\right\}=2$
Also, $f(1)=0$
\Rightarrow RHL $\neq \mathrm{LHL}=f(1)$
Hence, $f(x)$ is not continuous at $x=1$
14
(c)

It is clear from the graph that minimum $f(x)$ is

$f(x)=x+1, \quad \forall x \in R$
Hence, it is a straight line, so it is differentiable everywhere
15
(c)

Since, $f(x)$ is continuous at $x=\frac{\pi}{2}$
$\lim _{\text {- }^{-1}}(m x+1)=\lim _{x \rightarrow \pi^{+}}(\sin x+n)$
$x \rightarrow \frac{\pi^{-1}}{2} \quad x \rightarrow \frac{\pi^{+}}{2}$
$\Rightarrow m \frac{\pi}{2}+1=\sin \frac{\pi}{2}+n$
$\Rightarrow \quad \frac{m \pi}{2}=n$
16
(a)

This function is continuous at $x=0$, then

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\log _{\mathrm{e}}\left(1+x^{2} \tan x\right)}{\sin x^{3}}=f(0) \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{\log _{\mathrm{e}}\left\{1+x^{2}\left(x+\frac{x^{3}}{3}+\ldots\right)\right\}}{x^{3}-\frac{x^{9}}{3!}+\frac{x^{15}}{5!}-\ldots}=f(0)
\end{aligned}
$$

$\Rightarrow \lim _{x \rightarrow 0} \frac{\log _{\mathrm{e}}\left(1+x^{3}\right)}{x^{3}-\frac{x^{9}}{3!}+\frac{x^{15}}{5!}-\ldots}=f(0)$
[neglecting higher power of x in $x^{2} \tan x$]
$\Rightarrow \lim _{x \rightarrow 0} \frac{x^{3}-\frac{x^{6}}{2}+\frac{x^{9}}{3}-\ldots}{\mathrm{x}^{3}+\frac{\mathrm{x}^{9}}{3!}+\frac{\mathrm{x}^{15}}{5!}-\ldots}=f(0)$
$\Rightarrow \quad 1=f(0)$
17 (a)
Given, $f(x)$ is continuous at $x=0$
\therefore Limit must exist
ie, $\lim _{x \rightarrow 0} x^{p} \sin \frac{1}{x}=(0)^{p} \sin \infty=0$, when, $0<p<\infty$
Now, RHD $=\lim _{h \rightarrow 0} \frac{h^{p} \sin \frac{1}{h}-0}{h}=\lim _{h \rightarrow 0} h^{p-1} \sin \frac{1}{h}$
LHD $=\lim _{h \rightarrow 0} \frac{(-h)^{p} \sin \left(-\frac{1}{h}\right)-0}{-h}$
$=\lim _{h \rightarrow 0}(-1)^{p} h^{p-1} \sin \frac{1}{h}$
Since, $f(x)$ is not differentiable at $x=0$
$\therefore \quad p \leq 1$...(ii)
From Eqs.(i) and (iii), $0<p \leq 1$
18
(a)

We have,
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}=\lim _{x \rightarrow 0}\left(\frac{\sin x^{2}}{x^{2}}\right) x=1 \times 0=0=f(0)$
So, $f(x)$ is continuous at $x=0 . f(x)$ is also derivable at $x=0$, because
$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}=\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x^{2}}=1$ exists finitely
19

(a)

A function f on R into itself is continuous at a point a in R, iff for each $\in>0$ there exist $\delta>0$, such that
$|f(x)-f(a)|<\epsilon \Rightarrow|x-a|<\delta$
20
(a)

We have,
$f(x)=x-\left|x-x^{2}\right|, \quad-1 \leq x \leq 1$
$\Rightarrow f(x)=\left\{\begin{array}{lr}x+x-x^{2}, & -1 \leq x<0 \\ x-\left(x-x^{2}\right), & 0 \leq x \leq 1\end{array}\right.$
$\Rightarrow f(x)=\left\{\begin{aligned} 2 x-x^{2}, & -1 \leq x<0 \\ x^{2}, & 0 \leq x \leq 1\end{aligned}\right.$
Clearly, $f(x)$ is continuous at $x=0$
Also,
$\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1} 2 x-x^{2}=-2-1=-3=f(-1)$
and,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{2}=1=f(1)$
So, $f(x)$ is right continuous at $x=-1$ and left continuous at $x=1$
Hence, $f(x)$ is continuous on $[-1,1]$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	B	C	D	C	C	B	D	B	D	C
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	C	A	C	C	A	A	A	A	A

