

Class : XIth Date : Subject : Maths DPP No. :1

Topic :-Applications of Intergrals

1. Area bounded by the curve y = (x - 1)(x - 2)(x - 3) and x-axis lying between the ordinates x = 0 and x = 3 is equal to a) 9/4 b)11/4 d)7/4 c) 11/2 2. The area of the region bounded by the curves $y = e^x$, $y = \log_e x$ and lines x = 1, x = 2 is b) $e^2 - e + 1$ c) $e^2 - e + 1 - 2\log_e 2$ d) $e^2 + e - 2\log_e 2$ a) $(e-1)^2$ 3. The value of k for which the area of the figure bounded by the curve $y = 8x^2 - x^5$, the straight line x = 1 and x = k and the *x*-axis is equal to 16/3a) 2 b) $\sqrt[3]{8} - \sqrt{17}$ c) 3 d) −1 4. The area bounded by the curve y = x, x-axis and ordinates x = -1 to x = 2, is c) 3/2 sq unit a) 0 sq unit b) 1/2 sq unit d)5/2 sq unit 5. The area (in square unit) of the region bounded by the curves $2x = y^2 - 1$ and x = 0 is a) $\frac{1}{2}$ sq unit b) $\frac{2}{2}$ sq unit c) 1 sq unit d) 2 sq units 6. The area bounded by the curve $y = 4x - x^2$ and the *x*-axis, is d) $\frac{34}{2}$ sq. units a) $\frac{30}{7}$ sq. units b) $\frac{31}{7}$ sq. units c) $\frac{32}{3}$ sq. units 7. The volume of the solid generated by revolving the region bounded by $y = x^2 + 1$ and y = 2x + 1 about *x*-axis is b) $\frac{42\pi}{15}$ cu units c) $\frac{52\pi}{15}$ cu units a) $\frac{104\pi}{15}$ cu units d) None of these 8. The area bounded by the curves $|x| + |y| \ge 1$ and $x^2 + y^2 \le 1$ is c) $(\pi - 2)$ sq unit a) 2 sq unit b) π sq unit d) $(\pi + 2)$ sq unit 9. The area bounded by the curves $y = \cos x$ and $y = \sin x$ between the ordinance x = 0 and $x = \frac{3\pi}{2}$ is a) $(4\sqrt{2}-2)$ sq units b) $(4\sqrt{2}+2)$ sq units c) $(4\sqrt{2}-1)$ sq units d) $(4\sqrt{2}+1)$ sq units 10. Area bounded by the curves $y = \left[\frac{x^2}{64} + 2\right]$, y = x - 1 and x = 0 above *x*-axis is ([.] denotes the greatest integer function) b)3 sq unit a) 2 sq unit c) 4 sq unit d) None of these

11. The area bounded by the curve $y^2 = 8x$ and $x^2 = 8y$, is

a)
$$\frac{16}{3}$$
 sq. units b) $\frac{3}{16}$ sq. units c) $\frac{14}{3}$ sq. units d) $\frac{3}{14}$ sq. units
12. The area enclosed between the curve $y = \log_e(x + e)$ and the coordinate axis is
a) 4 sq units b) 3 sq units c) 2 sq units d) 1 sq unit
13. If area bounded by the curves $y^2 = 4 ax$ and $y = mx$ is $a^2/3$, then the value of *m* is
a) 2 b) -2 c) $1/2$ d) 1
14. The area of the figure bounded by the curves $y = |x - 1|$ and $y = 3 - |x|$ is
a) 2 b) 3 c) 4 d) 1
15. The area bounded by the curves $y = \sqrt{5 - x^2}$ and $y = |x - 1|$ is
a) $(\frac{5\pi}{4} - 2)$ sq units b) $\frac{(5\pi - 2)}{4}$ sq units c) $\frac{(5\pi - 2)}{2}$ sq units d) $(\frac{\pi}{2} - 5)$ sq units
16. Area bounded by the curve $xy^2 = a^2(a - x)$ and y-axis, is
a) $\pi a^2/2$ b) πa^2 c) $3\pi a^2$ d) $2\pi a^2$
17. The area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, is
a) πab b) $\frac{\pi}{4}(a^2 + b^2)$ c) $\pi (a + b)$ d) $\pi a^2 b^2$
18. The area bounded by the curve $y = x^6(\pi - x)^8$ is
a) $\frac{\pi^{15} \times 3! \times 4!}{15!}$ sq unit b) $\frac{\pi^6 \times 6! \times 8!}{15!}$ sq unit c) $\frac{\pi^{15} \times 6! \times 8!}{15!}$ sq unit d) $\frac{\pi^8 \times 6! \times 8!}{15!}$ sq unit
19. The part of circle $x^2 + y^2 = 9$ in between $y = 0$ and $y = 2$ is revolved about y-axis. The volume of generating solid will be
a) $\frac{46}{3}\pi$ cu units b) 12 \pi cu jnits c) 16 \pi cu units d) 28 \pi cu units
20. The area of the region by curves $y = x\log x$ and $y = 2x - 2x^2$ is
a) $\frac{1}{2}$ sq units b) $\frac{3}{12}$ sq unit c) $\frac{7}{12}$ sq units d) None of these