

Class : XIth Date :

Subject : Maths DPP No. :8

d) $\frac{5}{6}$

Applications of Intergral 'opic :

1. The part of straight line y = x + 1 between x = 2 and x = 3 is revolved about x-axis, then the curved surface of the solid thus generated is

a)
$$\frac{37\pi}{3}$$
 b) $7\pi\sqrt{2}$ c) 37π d) $7\pi/\sqrt{2}$

- 2. Area bounded by $y^2 = x$, y = 0, x = 1, x = 4 is a) $\frac{28}{3}$ sq units b) $\frac{3}{28}$ sq units c) $\frac{8}{3}$ sq units d) $\frac{4}{3}$ sq units 3. The figure shows a $\triangle AOB$ and the parabola $y = x^2$. The ratio of the area of the $\triangle AOB$ to the area
- of the region *AOB* of the parabola $y = x^2$ is equal to

(-a,
$$a^{2}$$
) A
x'
a) $\frac{3}{r}$
b) $\frac{3}{4}$
c) $\frac{7}{9}$

If the area above *x*-axis, bounded by the curves $y = 2^{kx}$ and x = 0 and x = 2 is $\frac{3}{\log 2}$, then the 4. value of k is 2

a)
$$1/2$$
 b) 1 c) -1 d)
. The area between the curves $y = \cos x, x$ -axis and the line $y = x + 1$, is

5 a) 1/2 b)1 c) 3 d)2 6.

The area bounded by the parabola
$$x = 4 - y^2$$
 and $y - axis$, in square units, is
a) $\frac{3}{32}$ b) $\frac{32}{3}$ c) $\frac{33}{2}$ d) $\frac{16}{3}$

7. The volume of the solid formed by rotating the area enclosed between the curve $y = x^2$ and the line y = 1 about y = 1 is (in cubic unit)

a)
$$\frac{9\pi}{5}$$
 b) $\frac{2\pi}{5}$ c) $\frac{8\pi}{3}$ d) $\frac{7\pi}{5}$

8.	The volume of spherical cap of height <i>h</i> cut off from a sphere of radius <i>a</i> is equal to			
	a) $\frac{\pi}{3}h^2(3a-h)$		b) $\pi(a-h)(2a^2-h^2-ah)$	
	c) $\frac{4\pi}{3}h^{3}$		d) None of these above	
9.	The area of the region bounded by the straight lines $x = 0$ and $x = 2$ and the curves $y = 2^x$ ar $y = 2x - x^2$ is equal to			
	2 4	3 4	<u>ا</u> 1 4	4 3
	$rac{\log 2}{\log 2} = \frac{1}{3}$	$\log 2 = \frac{1}{3}$	$\log 2 = \frac{1}{3}$	$rac{1}{\log 2} = \frac{1}{2}$
10.	The area bounded by the curves $f(x) = ce^{x}(c > 0)$, the <i>x</i> -axis and the two ordinates $x = p$ and			
	x = q, is proportional to			
	a) $f(p)f(q)$	b) $ f(p) - f(q) $	c) $f(p) + f(q)$	d) $\sqrt{f(p)f(q)}$
11.	The area between <i>x</i> -axis and curve $y = \cos x$ when $0 \le x \le 2\pi$, is			
	a) 0	b)2	c) 3	d)4
12.	Area enclosed between the curves $y^2(2a - x) = x^3$ and line $x = 2a$ above <i>x</i> -axis is			
	a) πa^2 sq unit	b) $\frac{3\pi a^2}{2}$ sq unit	c) $2\pi a^2$ sq unit	d) $3\pi a^2$ sq unit
13.	The area lying between parabola $y^2 = 4ax$ and it's latusrectum is			
	a) $\frac{4}{3}a^2$ sq unit	b) $\frac{16}{3}a^2$ sq unit	c) $\frac{8}{3}a^2$ sq unit	d) None of these
14.	Ratio of the area cut off a p <mark>arabo</mark> la by any double ordinate is that corresponding rectangle			
	contained by that double o <mark>rdina</mark> te and <mark>its dis</mark> tance from the vertex is			
	a) 1/2	b)1/3	c) 2/3	d)1
15.	The area cut off the par	abola $4y = 3x^2$ by the st	traight line $2y = 3x + 12$	2 in square units is
	a) 16	b)21	c) 27	d)36
16.	The area bounded by the curve $y^2(2a - x) = x^3$ and the line $x = 2a$ is			
	a) $3\pi a^2$ sq units	b) $\frac{3\pi a^2}{2}$ sq units	c) $\frac{3\pi a^2}{4}$ sq units	d) $\frac{6\pi a^2}{5}$ sq units
17.	The area bounded by $y = -x^2 + 2x + 3$ and $y = 0$ is			
	a) 32 sq units	b) 32/3 sq units	c) 1/32 sq unit	d) 1/3 sq unit
18.	The area of the region bounded by the curve $a^4y^2 = (2a - x)x^5$ is to that of the circle whose			
	radius is <i>a</i> , is given by the ratio			
	a) 4:5	b) 5:8	c) 2:3	d) 3:2
19.	The area bounded by the curves $y^2 = x$ and $y = x^2$ is			
	a) $\frac{2}{3}$ sq unit	b) 1 sq unit	c) $\frac{1}{2}$ sq unit	d) None of these
20.	Area common to the curves $y = \sqrt{x}$ and $x = \sqrt{y}$ is			
	a) 1	b)2/3	c) 1/3	d)4/3