Class: XIth
Date :
Subject : Maths
DPP No. :8

Topic:-Applications of Intergrals

1. The part of straight line $y=x+1$ between $x=2$ and $x=3$ is revolved about x-axis, then the curved surface of the solid thus generated is
a) $\frac{37 \pi}{3}$
b) $7 \pi \sqrt{2}$
c) 37π
d) $7 \pi / \sqrt{2}$
2. Area bounded by $y^{2}=x, y=0, x=1, x=4$ is
a) $\frac{28}{3}$ sq units
b) $\frac{3}{28}$ sq units
c) $\frac{8}{3}$ sq units
d) $\frac{4}{3}$ sq units
3. The figure shows a $\triangle A O B$ and the parabola $y=x^{2}$. The ratio of the area of the $\triangle A O B$ to the area of the region $A O B$ of the parabola $y=x^{2}$ is equal to

a) $\frac{3}{5}$
b) $\frac{3}{4}$
c) $\frac{7}{8}$
d) $\frac{5}{6}$
4. If the area above x-axis, bounded by the curves $y=2^{k x}$ and $x=0$ and $x=2$ is $\frac{3}{\log 2}$, then the value of k is
a) $1 / 2$
b) 1
c) -1
d) 2
5. The area between the curves $y=\cos x, x$-axis and the line $y=x+1$, is
a) $1 / 2$
b) 1
c) 3
d) 2
6. The area bounded by the parabola $x=4-y^{2}$ and y-axis, in square units, is
a) $\frac{3}{32}$
b) $\frac{32}{3}$
c) $\frac{33}{2}$
d) $\frac{16}{3}$
7. The volume of the solid formed by rotating the area enclosed between the curve $y=x^{2}$ and the line $y=1$ about $y=1$ is (in cubic unit)
a) $\frac{9 \pi}{5}$
b) $\frac{2 \pi}{5}$
c) $\frac{8 \pi}{3}$
d) $\frac{7 \pi}{5}$
8. The volume of spherical cap of height h cut off from a sphere of radius a is equal to
a) $\frac{\pi}{3} h^{2}(3 a-h)$
b) $\pi(a-h)\left(2 a^{2}-h^{2}-a h\right)$
c) $\frac{4 \pi}{3} h^{3}$
d) None of these above
9. The area of the region bounded by the straight lines $x=0$ and $x=2$ and the curves $y=2^{x}$ and $y=2 x-x^{2}$ is equal to
a) $\frac{2}{\log 2}-\frac{4}{3}$
b) $\frac{3}{\log 2}-\frac{4}{3}$
c) $\frac{1}{\log 2}-\frac{4}{3}$
d) $\frac{4}{\log 2}-\frac{3}{2}$
10. The area bounded by the curves $f(x)=c e^{x}(c>0)$, the x-axis and the two ordinates $x=p$ and $x=q$, is proportional to
a) $f(p) f(q)$
b) $|f(p)-f(q)|$
c) $f(p)+f(q)$
d) $\sqrt{f(p) f(q)}$
11. The area between x-axis and curve $y=\cos x$ when $0 \leq x \leq 2 \pi$, is
a) 0
b) 2
c) 3
d) 4
12. Area enclosed between the curves $y^{2}(2 a-x)=x^{3}$ and line $x=2 a$ above x-axis is
a) πa^{2} sq unit
b) $\frac{3 \pi a^{2}}{2}$ sq unit
c) $2 \pi a^{2}$ sq unit
d) $3 \pi a^{2}$ sq unit
13. The area lying between parabola $y^{2}=4 a x$ and it's latusrectum is
a) $\frac{4}{3} a^{2}$ sq unit
b) $\frac{16}{3} a^{2}$ sq unit
c) $\frac{8}{3} a^{2}$ sq unit
d) None of these
14. Ratio of the area cut off a parabola by any double ordinate is that corresponding rectangle contained by that double ordinate and its distance from the vertex is
a) $1 / 2$
b) $1 / 3$
c) $2 / 3$
d) 1
15. The area cut off the parabola $4 y=3 x^{2}$ by the straight line $2 y=3 x+12$ in square units is
a) 16
b) 21
c) 27
d) 36
16. The area bounded by the curve $y^{2}(2 a-x)=x^{3}$ and the line $x=2 a$ is
a) $3 \pi a^{2}$ sq units
b) $\frac{3 \pi a^{2}}{2}$ sq units
c) $\frac{3 \pi a^{2}}{4}$ sq units
d) $\frac{6 \pi a^{2}}{5}$ sq units
17. The area bounded by $y=-x^{2}+2 x+3$ and $y=0$ is
a) 32 sq units
b) $32 / 3$ sq units
c) $1 / 32$ sq unit
d) $1 / 3$ sq unit
18. The area of the region bounded by the curve $a^{4} y^{2}=(2 a-x) x^{5}$ is to that of the circle whose radius is a, is given by the ratio
a) $4: 5$
b) $5: 8$
c) $2: 3$
d) $3: 2$
19. The area bounded by the curves $y^{2}=x$ and $y=x^{2}$ is
a) $\frac{2}{3}$ sq unit
b) 1 sq unit
c) $\frac{1}{2}$ sq unit
d) None of these
20. Area common to the curves $y=\sqrt{x}$ and $x=\sqrt{y}$ is
a) 1
b) $2 / 3$
c) $1 / 3$
d) $4 / 3$
