Class : XIth Date :

1

Solutions

DAILY PRACTICE PROBLE

Subject : Maths DPP No. : 8

Topic :-Applications of integrales

(b) Curved surface $= \int_{a}^{b} 2 \pi y \sqrt{\left[1 + \left(\frac{dy}{dx}\right)^{2}\right]} dx$ Given that, a = 2b = 3 and y = x + 1 $\therefore \frac{dy}{dx} = 1 + 0 \Rightarrow \frac{dy}{dx} = 1$ Therefore, curved surface $= \int_{2}^{3} 2\pi (x+1) \sqrt{\left[1 + (1)^{2}\right]} dx = 2\sqrt{2} \pi \int_{2}^{3} (x+1) dx$

$$= 2\sqrt{2}\pi \left[\frac{(x+1)^2}{2}\right]_2^3 = \sqrt{2}\pi(16-9) = 7\pi\sqrt{2}$$

2 (a)

Required area =
$$2 \int_{1}^{4} \sqrt{x} \, dx$$

= $2 \left[\frac{2}{3} x^{3/2} \right]_{1}^{4} = \frac{4}{3} [8 - 1] = \frac{28}{3}$ sq units

3 **(b)**

Area of curve
$$OAB = 2 \int_{0}^{a^{2}} x \, dy$$

 $(-a, a^{2})A$
 $(-a$

$$= \frac{4}{3}[a^{3}]$$

Now, Area of $\triangle OAB = \frac{1}{2} \times AB \times OC$
$$= \frac{1}{2} \times 2a \times a^{2} = a^{3}$$
$$\therefore \frac{\text{Area of } \triangle AOB}{\text{Area of curve } AOB} = \frac{a^{3}}{\frac{4}{3}a^{3}} = \frac{3}{4}$$

4 **(b)**

Area bounded by curves $y = 2^{kx}$ and x = 0 and x = 2 is given by

$$A = \int_0^2 2^{kx} dx$$

= $\left[\frac{2^{kx}}{k \log 2}\right]_0^2 = \left[\frac{2^{2k} - 1}{k \log 2}\right]$
But $A = \frac{3}{\log 2}$
 $\therefore \frac{2^{2k} - 1}{k \log 2} = \frac{3}{\log 2} \Rightarrow 2^{2k} - 1 = 3k$

This, relation is satisfied by only option (b)

Required volume =
$$\pi \int_{-1}^{1} y^2 dx = 2\pi \int_{0}^{1} x^4 dx$$

= $2\pi \left[\frac{x^5}{5}\right]_{0}^{1} = \frac{2\pi}{5}$ cu unit

8 (a)

The required volume of the segment is generated by revolving the area *ABCA* of the circle $x^2 + y^2 = a^2$ about the *x*-axis and for the arc *BA*.

and
$$OA = a$$
 [given]
 $\therefore OC = OA - CA = a - h$
 $\therefore x$ varies from $a - h$ to a
 \therefore The required volume $= \int_{a-h}^{a} \pi y^{2} dx$
 $= \pi \int_{a-h}^{a} (a^{2} - x^{2}) dx = \pi \left[a^{2}x - \frac{1}{3}x^{3} \right]_{a-h}^{a}$
 $= \pi \left[\left(a^{3} - \frac{1}{3}a^{3} \right) - \left\{ a^{3} - a^{2}h - \frac{1}{3}(a^{3} - 3a^{2}h + 3ah^{2} - h^{3}) \right\} \right]$
 $= \pi \left[a^{2}h - a^{2}h + ah^{2} - \frac{1}{3}h^{3} \right] = \frac{1}{3}\pi h^{2}(3a - h)$
(b)

9

Required area

10 **(b)**

Required area = $\int_q^p ce^x dx$ = $[ce^x]_q^p$ = $c[e^p - e^q]$ = f(p) - f(q)y (x = q | x = p)

12 **(b)** Given equation of curve is $y^2(2a - x) = x^3$

$$y_{A}$$

 $x = 2a$
 $x = 2a$

Which is symmetrical about *x*-axis and passes through origin

Also,
$$\frac{x^3}{2a-x} < 0$$

For $x > 2a$ or $x < 0$
So, curve does not lie in $x > 2a$ and $x < 0$, therefore curve lies wholly on $0 \le x \le 2a$
 \therefore Required area $= \int_0^{2a} \frac{x^{3/2}}{\sqrt{2a-x}} dx$
Put $x = 2 a \sin^2 \theta$
 $\Rightarrow dx = 2a \cdot 2 \sin \theta + \cos \theta d\theta$
 \therefore Required area $= \int_0^{\pi/2} 8a^2 \sin^4 \theta d\theta$
 $= 8a^2 [\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}]$ (using gamma function)
 $= \frac{3\pi a^2}{2}$ sq unit
(c)

Required area = $2\int_0^a \sqrt{4ax} dx$ = $4\sqrt{a} \times \frac{2}{3} [x^{3/2}]_0^a = \frac{8}{3}a^2$ sq unit

Let $y^2 = 4ax$ be a parabola and let x = b be a double ordinate. Then,

 A_1 = Area enclosed by the parabola $y^2 = 4ax$ and the double ordinate x = b

$$\Rightarrow A_{1} = 2 \int_{0}^{b} y \, dx = 2 \int_{0}^{b} \sqrt{4ax} \, dx = 4\sqrt{a} \int_{0}^{b} \sqrt{x^{3}} \, dx$$

$$\Rightarrow A_{1} = 4\sqrt{a} \Big[\frac{2}{3} x^{3/2} \Big]_{0}^{b} = 4\sqrt{a} \times \frac{2}{3} b^{3/2} = \frac{8}{3} a^{1/2} b^{3/2}$$

And, A_2 = Area of the rectangle *ABCD* $\Rightarrow A_2 = AB \times AD = 2\sqrt{4ab} \times b = 4 a^{1/2}b^{3/2}$ $\therefore A_1 : A_2 = 8/3 a^{1/2}b^{3/2} : 4 a^{1/2}b^{3/2} = 2/3 : 1 = 2 : 3$

16 **(b)**

17

18

The curve $y^2(2a - x) = x^3$ is symmetrical about *x*-axis and passes through origin. Also, $\frac{x^3}{2a - x} < 0$ for x > 2a and x < 0So, curve does not lie in x > 2a and x < 0, therefore curves lies wholly on $0 \le x \le 2a$ \therefore Requried area $= \int_0^{2a} \frac{x^{3/2}}{\sqrt{2a - x}} dx$ Put $x = 2a\sin^2\theta$ $\Rightarrow 0 dx = 4a \sin\theta \cos\theta d\theta$ \therefore Requried area $= \int_0^{\frac{\pi}{2}} 8a^2 \sin^4\theta d\theta$ $= 8a^2 [\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}]$ $= \frac{3\pi a^2}{2}$ sq unit (b)

Intersection points of given curves are (-1,0) and (3,0)

Required area =
$$\int_{-1}^{3} (-x^2 + 2x + 3) dx$$

= $\left[\frac{x^3}{3} + \frac{2x^2}{2} + 3x\right]_{-1}^{3}$
= $\left[-9 + 9 + 9 - \left(\frac{1}{3} + 1 - 3\right)\right]$
= $\frac{32}{3}$ sq units
(b)
Given curve $a^4y^2 = (2a - x)x^5$
Cut off x-axis, when $y = 0$
 $0 = (2a - x)x^5$
 $\therefore x = 0, 2a$
Hence, the area bounded by the curve
 $a^4y^2 = (2a - x)x^5$ is
 $A_1 = \int_{0}^{2a} \frac{\sqrt{(2a - x)}x^{5/2}}{a^2} dx$
Put $x = 2a\sin^2 \theta$
 $\therefore dx = 4a\sin\theta\cos\theta d\theta$
 $\therefore A_1 = \int_{0}^{\pi/2} \frac{\sqrt{2a}\cos\theta(2a)^{5/2}\sin^5\theta 4a\sin\theta\cos\theta}{a^2} d\theta$
 $= 32a^2 \int_{0}^{\pi/2} \sin^6\theta\cos^2\theta d\theta$
 $= 32a^2 \cdot \frac{(5 \cdot 3 \cdot 1)(1)}{8 \cdot 6 \cdot 4 \cdot 2} \cdot \frac{\pi}{2}$ (by walli's formula)

$$= \frac{5\pi a^2}{8}$$
Area of circle, $A_2 = \pi a^2$

$$\therefore \frac{A_1}{A_2} = \frac{5}{8}$$

$$\Rightarrow A_1: A_2 = 5:8$$
19 (d)
Required area $= \int_0^1 (\sqrt{x} - x^2) dx$

$$= \left[\frac{2x^{3/2}}{3} - \frac{x^3}{3}\right]_0^1 = \left(\frac{2}{3} - \frac{1}{3}\right) = \frac{1}{3} \text{ sq unit}$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	A	В	В	A	В	В	A	В	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	В	C	C	C	В	В	В	D	С