Class: XIth
Date :
Solutions
Subject : Maths
DPP No. : 8

Topic:-Applications of integrales

1 (b)
Curved surface $=\int_{a}^{b} 2 \pi y \sqrt{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]} d x$
Given that, $a=2 b=3$ and $y=x+1$
$\therefore \frac{d y}{d x}=1+0 \Rightarrow \frac{d y}{d x}=1$
Therefore, curved surface

$$
\begin{aligned}
& =\int_{2}^{3} 2 \pi(x+1) \sqrt{\left[1+(1)^{2}\right]} d x=2 \sqrt{2} \pi \int_{2}^{3}(x+1) d x \\
& =2 \sqrt{2} \pi\left[\frac{(x+1)^{2}}{2}\right]_{2}^{3}=\sqrt{2} \pi(16-9)=7 \pi \sqrt{2}
\end{aligned}
$$

2 (a)
Required area $=2 \int_{1}^{4} \sqrt{x} d x$
$=2\left[\frac{2}{3} x^{3 / 2}\right]_{1}^{4}=\frac{4}{3}[8-1]=\frac{28}{3}$ sq units
3 (b)
Area of curve $O A B=2 \int_{0}^{a^{2}} x d y$

$=2 \int_{0}^{a^{2}} \sqrt{y} d y=2\left[\frac{y^{3 / 2}}{3 / 2}\right]_{0}^{a^{2}}$
$=\frac{4}{3}\left[a^{3}\right]$
Now, Area of $\triangle O A B=\frac{1}{2} \times A B \times O C$
$=\frac{1}{2} \times 2 a \times a^{2}=a^{3}$
$\therefore \frac{\text { Area of } \triangle A O B}{\text { Area of curve } A O B}=\frac{a^{3}}{\frac{4}{3} a^{3}}=\frac{3}{4}$
4 (b)
Area bounded by curves $y=2^{k x}$ and $x=0$ and $x=2$ is given by
$A=\int_{0}^{2} 2^{k x} d x$
$=\left[\frac{2^{k x}}{k \log 2}\right]_{0}^{2}=\left[\frac{2^{2 k}-1}{k \log 2}\right]$
But $A=\frac{3}{\log 2}$
$\therefore \frac{2^{2 k}-1}{k \log 2}=\frac{3}{\log 2} \Rightarrow 2^{2 k}-1=3 k$
This, relation is satisfied by only option (b)
7
(b)

Required volume $=\pi \int_{-1}^{1} y^{2} d x=2 \pi \int_{0}^{1} x^{4} d x$
$=2 \pi\left[\frac{x^{5}}{5}\right]_{0}^{1}=\frac{2 \pi}{5}$ cu unit

8 (a)
The required volume of the segment is generated by revolving the area $A B C A$ of the circle $x^{2}+y^{2}=a^{2}$ about the x-axis and for the arc $B A$.

Here, $C A=h$
and $O A=a$ [given]
$\therefore O C=O A-C A=a-h$
$\therefore x$ varies from $a-h$ to a
\therefore The required volume $=\int_{a-h}^{a} \pi y^{2} d x$
$=\pi \int_{a-h}^{a}\left(a^{2}-x^{2}\right) d x=\pi\left[a^{2} x-\frac{1}{3} x^{3}\right]_{a-h}^{a}$
$=\pi\left[\left(a^{3}-\frac{1}{3} a^{3}\right)-\left\{a^{3}-a^{2} h-\frac{1}{3}\left(a^{3}-3 a^{2} h+3 a h^{2}-h^{3}\right)\right\}\right]$
$=\pi\left[a^{2} h-a^{2} h+a h^{2}-\frac{1}{3} h^{3}\right]=\frac{1}{3} \pi h^{2}(3 a-h)$
9 (b)
Required area

$$
\begin{aligned}
& =\int_{0}^{2}\left[2^{x}-\left(2 x-2^{2}\right)\right] d x \\
& =\left[\frac{2^{x}}{\log 2}-x^{2}+\frac{x^{3}}{3}\right]_{0}^{2} \\
& =\frac{4}{\log 2}-4+\frac{8}{3}-\frac{1}{\log 2} \\
& =\left(\frac{3}{\log 2}-\frac{4}{3}\right) \operatorname{sq} \text { unit }
\end{aligned}
$$

(b)

Required area $=\int_{q}^{p} c e^{x} d x$
$=\left[c e^{x}\right]_{q}^{p}$
$=c\left[e^{p}-e^{q}\right]$
$=f(p)-f(q)$

12
(b)

Given equation of curve is
$y^{2}(2 a-x)=x^{3}$

Which is symmetrical about x-axis and passes through origin
Also, $\frac{x^{3}}{2 a-x}<0$
For $x>2 a$ or $x<0$
So, curve does not lie in $x>2 a$ and $x<0$, therefore curve lies wholly on $0 \leq x \leq 2 a$
\therefore Required area $=\int_{0}^{2 a} \frac{x^{3 / 2}}{\sqrt{2 a-x}} d x$
Put $x=2 a \sin ^{2} \theta$
$\Rightarrow d x=2 a \cdot 2 \sin \theta+\cos \theta d \theta$
\therefore Required area $=\int_{0}^{\pi / 2} 8 a^{2} \sin ^{4} \theta d \theta$
$=8 a^{2}\left[\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}\right]$ (using gamma function)
$=\frac{3 \pi a^{2}}{2}$ sq unit
13 (c)
Required area $=2 \int_{0}^{a} \sqrt{4 a x} d x$
$=4 \sqrt{a} \times \frac{2}{3}\left[x^{3 / 2}\right]_{0}^{a}=\frac{8}{3} a^{2}$ sq unit
14 (c)
Let $y^{2}=4 a x$ be a parabola and let $x=b$ be a double ordinate. Then,
$A_{1}=$ Area enclosed by the parabola $y^{2}=4 a x$ and the double ordinate $x=b$
$\Rightarrow A_{1}=2 \int_{0}^{b} y d x=2 \int_{0}^{b} \sqrt{4 a x} d x=4 \sqrt{a} \int_{0}^{b} \sqrt{x^{3}} d x$
$\Rightarrow A_{1}=4 \sqrt{a}\left[\frac{2}{3} x^{3 / 2}\right]_{0}^{b}=4 \sqrt{a} \times \frac{2}{3} b^{3 / 2}=\frac{8}{3} a^{1 / 2} b^{3 / 2}$

And, $A_{2}=$ Area of the rectangle $A B C D$
$\Rightarrow A_{2}=A B \times A D=2 \sqrt{4 a b} \times b=4 a^{1 / 2} b^{3 / 2}$
$\therefore A_{1}: A_{2}=8 / 3 a^{1 / 2} b^{3 / 2}: 4 a^{1 / 2} b^{3 / 2}=2 / 3: 1=2: 3$

16 (b)
The curve $y^{2}(2 a-x)=x^{3}$ is symmetrical about x-axis and passes through origin.
Also, $\frac{x^{3}}{2 a-x}<0$ for $x>2 a$ and $x<0$
So, curve does not lie in $x>2 a$ and $x<0$, therefore curves lies wholly on $0 \leq x \leq 2 a$
\therefore Requried area $=\int_{0}^{2 \mathrm{a}} \frac{x^{3 / 2}}{\sqrt{2 a-x}} d x$
Put $x=2 a \sin ^{2} \theta$
$\Rightarrow 0 d x=4 a \sin \theta \cos \theta d \theta$
\therefore Requried area $=\int_{0}^{\frac{\pi}{2}} 8 a^{2} \sin ^{4} \theta d \theta$
$=8 a^{2}\left[\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}\right]$
$=\frac{3 \pi a^{2}}{2}$ sq unit
17 (b)
Intersection points of given curves are ($-1,0$) and (3,0)
Required area $=\int_{-1}^{3}\left(-x^{2}+2 x+3\right) d x$
$=\left[\frac{x^{3}}{3}+\frac{2 x^{2}}{2}+3 x\right]_{-1}^{3}$
$=\left[-9+9+9-\left(\frac{1}{3}+1-3\right)\right]$
$=\frac{32}{3}$ sq units
18 (b)
Given curve $a^{4} y^{2}=(2 a-x) x^{5}$
Cut off x-axis, when $y=0$
$0=(2 a-x) x^{5}$
$\therefore x=0,2 a$
Hence, the area bounded by the curve
$a^{4} y^{2}=(2 a-x) x^{5}$ is
$A_{1}=\int_{0}^{2 a} \frac{\sqrt{(2 a-x)} x^{5 / 2}}{a^{2}} d x$
Put $x=2 a \sin ^{2} \theta$
$\therefore d x=4 a \sin \theta \cos \theta d \theta$
$\therefore A_{1}=\int_{0}^{\pi / 2} \frac{\sqrt{2 a} \cos \theta(2 a)^{5 / 2} \sin ^{5} \theta 4 a \sin \theta \cos \theta}{a^{2}} d \theta$
$=32 a^{2} \int_{0}^{\pi / 2} \sin ^{6} \theta \cos ^{2} \theta d \theta$
$=32 a^{2} \cdot \frac{(5 \cdot 3 \cdot 1)(1)}{8 \cdot 6 \cdot 4 \cdot 2} \cdot \frac{\pi}{2}$ (by walli's formula)

$$
=\frac{5 \pi a^{2}}{8}
$$

Area of circle, $A_{2}=\pi a^{2}$
$\therefore \frac{A_{1}}{A_{2}}=\frac{5}{8}$
$\Rightarrow A_{1}: A_{2}=5: 8$
19 (d)
Required area $=\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x$

$=\left[\frac{2 x^{3 / 2}}{3}-\frac{x^{3}}{3}\right]_{0}^{1}=\left(\frac{2}{3}-\frac{1}{3}\right)=\frac{1}{3}$ sq unit

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	B	A	B	B	A	B	B	A	B	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	D	B	C	C	C	B	B	B	D	C			

