Class: XIth
Date :

Subject : Maths

DPP No. :7

Topic:-Applications of Intergrals

1. The area bounded by the x-axis and the curve $y=4 x-x^{2}-3$ is
a) $4 / 3$
b) $3 / 4$
c) 7
d) $3 / 2$
2. The area bounded by the curves $y^{2}=4 a^{2}(x-1)$ and lines $x=1$ and $y=4 a$ is
a) $4 a^{2}$ sq units
b) $\frac{16 a}{3}$ sq units
c) $\frac{16 a^{2}}{3}$ sq units
d) None of these
3. The area between the curves
$y=x e^{x}$ and $y=x e^{-x}$ and line $x=1$, in square unit, is
a) $2\left(e+\frac{1}{e}\right)$ sq units
b) 0 sq unit
c) $2 e$ sq units
d) $\frac{2}{e}$ sq unit
4. The area (in square unit) bounded by the curves $4 y=x^{2}$ and $2 y=6-x^{2}$ is
a) 8
b) 6
c) 4
d) 10
5. The area (in square unit)bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$ in the plane is
a) $\frac{8}{3}$
b) $\frac{16}{3}$
c) $\frac{32}{3}$
d) $\frac{64}{3}$
6. The positive value of the parameter ' a ' for which the area of the figure bounded by $y=$ $\sin a x, y=0, x=\frac{\pi}{a}$ and $x=\frac{\pi}{3 a}$ is 3 , is equal to
a) 2
b) $1 / 2$
c) $\frac{2+\sqrt{3}}{3}$
d) $3 / 2$
7. Area bounded by the curves $y=x^{2}$ and $y=2-x^{2}$ is
a) $8 / 3$ sq units
b) $3 / 8$ sq units
c) $3 / 2$ sq units
d) None of these
8. The positive value of the parameter ' a ' for which the area of the figure founded by $y=$ $\sin a x, y=0, x=\pi / a$ and $x=\pi / 3 a$ is 3 , is equal to
a) 2
b) $1 / 2$
c) $\frac{2+\sqrt{3}}{3}$
d) $\sqrt{3}$
9. The area between the curve $y=2 x^{4}-x^{2}$, the x-axis and the ordinates of two minima of the curve is
a) $\frac{7}{120}$ sq unit
b) $\frac{9}{120}$ sq unit
c) $\frac{11}{120}$ sq unit
d) $\frac{13}{120}$ sq unit
10. If the ordinate $x=a$ divides the area bounded by x-axis part of the curve $y=1+\frac{8}{x^{2}}$ and the ordinates $x=2, x=4$ into two equal parts, then a is equal
a) $\sqrt{2}$ sq unit
b) $2 \sqrt{2}$ sq unit
c) $3 \sqrt{2}$ sq unit
d) None of these
11. The volume of the solid obtained by revolving about y-axis the area enclosed between the ellipse $x^{2}+9 y^{2}=9$ and the straight line $x+3 y=3$, in the first quadrant is
a) 3π
b) 4π
c) 6π
d) 9π
12. The area of the plane region bounded by the curve $x=y^{2}-2$ and the line $y=-x$ is (in square units)
a) $\frac{13}{3}$
b) $\frac{2}{5}$
c) $\frac{9}{2}$
d) $\frac{5}{2}$
13. The area bounded by $y=x^{2}+2, x$-axis, $x=1$ and $x=2$ is
a) $\frac{16}{3}$ sq units
b) $\frac{17}{3}$ sq units
c) $\frac{13}{3}$ sq units
d) $\frac{20}{3}$ sq units
14. Area of the region bounded by the curves $y=2^{x}, y=2 x-x^{2}, x=0$ and $x=2$ is given by
a) $\frac{3}{\log 2}-\frac{4}{3}$
b) $\frac{3}{\log 2}+\frac{4}{3}$
c) $3 \log 2-\frac{4}{3}$
d) $3 \log ^{2}-\frac{4}{3}$
15. The area of the quadrilateral formed by the tangents at the end points of latusrectum to ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$, is
a) $27 / 4$ sq unit
b) 9 sq unit
c) $27 / 2$ sq unit
d) 27 squnit
16. The area bounded by the loop of the curve $a y^{2}=x^{2}(a-x)$ is equal to
a) $\frac{4}{15} a^{2}$ sq unit
b) $\frac{8}{15} a^{2}$ sq unit
c) $\frac{16}{15} a^{2}$ sq unit
d) None of these
17. The area of the closed figure bounded by the curves $y=\sqrt{x}, y=\sqrt{4-3 x}$ and $y=0$, is
a) $4 / 9$
b) $8 / 9$
c) $16 / 9$
d) $5 / 9$
18. The area bounded by the curves $y=3 x$ and $y=x^{2}$ is (in square unit)
a) 10
b) 5
c) 4.5
d) 9
19. The area of the figure bounded by the parabolas $x=-2 y^{2}$ and $x=1-3 y^{2}$ is
a) $8 / 3$
b) $6 / 3$
c) $4 / 3$
d) $2 / 3$
20. Area bounded by the liens $y=x, x=-1, x=2$ and x-axis is
a) $5 / 2$ sq units
b) $3 / 2$ sq units
c) $1 / 2$ sq unit
d) None of these
