Class : XIth
Date :

Subject : Maths
DPP No. :6

Topic :-Applications of Intergrals

1. The area formed by triangular shared region bounded by the curves $y=\sin x, y=\cos x$ and $x=0$ is
a) $(\sqrt{2}-1)$ sq unit
b) 1 sq unit
c) $\sqrt{2}$ sq unit
d) $(1+\sqrt{2})$ sq unit
2. The area of the region bounded by the curve $y=2 x-x^{2}$ and the line $y=x$ is
a) $1 / 2$
b) $1 / 3$
c) $1 / 4$
d) $1 / 6$
3. The area bounded by the curves $y=e^{x}, y=e^{-x}$ and $y=2$, is
a) $\log (16 / e)$
b) $\log (4 / e)$
c) $2 \log (4 / e)$
d) $\log (8 / e)$
4. The area bounded by $y=4-x^{2}$ and $y=\left[3+\frac{x^{2}}{4}\right]$, where $[\cdot]$ denotes greatest integer function, is
a) 1 sq unit
b) $\frac{1}{3}$ sq unit
c) $\frac{2}{3}$ sq unit
d) $\frac{4}{3}$ sq unit
5. The value of m for which the area included between the curves $y^{2}=4 a x$ and $y=m x$ equals, a^{2} $/ 3$ is
a) 1
b) 2
c) 3
d) $\sqrt{3}$
6. The area bounded by $y=2-|2-x|$ and $y=\frac{3}{|x|}$ is
a) $\frac{4+3 \ln 3}{2}$
b) $\frac{4-3 \ln 3}{2}$
c) $\frac{3}{2} \ln 3$
d) $\frac{1}{2}+\ln 3$
7. The area of the region bounded by the curve $9 x^{2}+4 y^{2}-36=0$ is
a) 9π sq units
b) 4π sq units
c) 36π sq units
d) 6π sq unit
8. The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to
a) $\frac{4}{3}$ sq uints
b) $\frac{5}{3}$ sq units
c) $\frac{1}{3}$ sq units
d) $\frac{2}{3}$ sq units
9. The area included between curves $y=x^{2}-3 x+2$ and $y=-x^{2}+3 x-2$ is
a) $\frac{1}{6}$ sq unit
b) $\frac{1}{2}$ sq unit
c) 1 sq unit
d) $\frac{1}{3}$ sq unit
10. The area bounded by the curve $y^{2}=x$ and the ordinate $x=36$ is divided in the ratio $1: 7$ by the ordinate $x=a$. Then $a=$
a) 8
b) 9
c) 7
d) 0
11. Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is
a) 2 sq. units
b) $9 / 4$ sq. units
c) $6 \sqrt{3}$ sq. units
d) None of these
12. The area bounded by the curve $y=x+\sin x$ and its inverse function between the ordinates $x=0$ and $x=2 \pi$, is
a) 8π sq unit
b) 4π sq unit
c) 8 sq unit
d) None of these
13. The area of the region bounded by $y=2 x-x^{2}$ and the x-axis is
a) $\frac{8}{3}$ sq units
b) $\frac{4}{3}$ sq units
c) $\frac{7}{3}$ sq units
d) $\frac{2}{3}$ sq units
14. The area of the closed figure bounded by $y=1 / \cos ^{2} x, x=0, y=0$ and $x=\pi / 4$, is
a) $\pi / 4$
b) $1+\pi / 4$
c) 1
d) 2
15. Area bounded by the curve $y=x \sin x$ and x-axis between $x=0$ and $x=2 \pi$ is
a) 2π sq unit
b) 3π sq unit
c) 4π sq unit
d) 5π sq unit
16. The line $y=m x$ bisects the area enclosed by the lines $x=0, y=0, x=3 / 2$ and the curve $y=1+4 x-x^{2}$. The value of m, is
a) $13 / 8$
b) $13 / 32$
c) $13 / 16$
d) $13 / 4$
17. Area lying between the curves $y^{2}=4 x$ and $y=2 x$ is equal to
a) $2 / 3$
b) $1 / 3$
c) $1 / 4$
d) $1 / 2$
18. The area contained between the x-axis and one arc of the curve $y=\cos 3 x$, is
a) $1 / 3$
b) $2 / 3$
c) $2 / 7$
d) $2 / 5$
19. The area bounded by the curve $y=\sec x$, the x-axis and the lines $x=0$ and $x=\pi / 4$, is
a) $\log (\sqrt{2}+1)$
b) $\log (\sqrt{2}-1)$
c) $\frac{1}{2} \log 2$
d) $\sqrt{2}$
20. The area of the region bounded by the parabola $y=x^{2}+1$ and the straight line $x+y=3$ is given by
a) $\frac{45}{7}$
b) $\frac{25}{4}$
c) $\frac{\pi}{18}$
d) $\frac{9}{2}$
