

Class : XIth Date : Subject : Maths DPP No. :4

Topic :-Applications of Intergrals

1.	The area bounded between the parabola $y^2 = 4x$ and the line $y = 2x - 4$ is equal to					
	a) $\frac{17}{3}$ sq units	b) $\frac{19}{3}$ sq units	c) 9 sq units	d) 15 sq units		
2.	The area in square units bounded by the curves $y = x^3$, $y = x^2$ and the ordinates $x = 1$, $x = 2$ is					
	a) 17/12	b)12/13	c) 2/7	d)7/2		
3.	The area bounded by the curve $y = \sin^2 x$ and lines $x = \frac{\pi}{2}$, $x = \pi$ and x-axis is					
	a) $\frac{\pi}{2}$ sq unit	b) $\frac{\pi}{4}$ sq unit	c) $\frac{\pi}{8}$ sq unit	d) None of these		
4.	Maximum area of rectangle whose two vertices lies on the x-axis and two on the curve $y = 3 - 3$					
	$ x , \forall x < 3$, is					
	a) 9 sq unit	b) $\frac{9}{4}$ sq unit	c) 3 sq unit	d)None of these		
5.	The area between the curve $y = x \sin x$ and x-axis where $0 \le x \le 2\pi$, is					
	a) 2π	b) 3π	c) 4π	d)π		
6.	The area common to the parabola $y = 2x^2$ and $y = x^2 + 4$, is					
	a) $\frac{2}{3}$ sq. units	b) $\frac{3}{2}$ sq. units	c) $\frac{32}{3}$ sq. units	d) $\frac{3}{32}$ sq. units		
7.	If a curve $y = a\sqrt{x} + bx$ passes through the point (1, 2) and the area bounded by the curves, line					
	x = 4 and <i>x</i> -axis is 8 so	q unit, then				
	a) <i>a</i> = 3, <i>b</i> = −1	b) <i>a</i> = 3, <i>b</i> = 1	c) $a = -3, b = 1$	d) $a = -3, b = -1$		
8.	If the area above the x-axis bounded by the curves $y = 2^{kx}$ and $x = 0$ and 2 is					
	$\frac{3}{2}$ then the value of k is					
	log 2					
0	a) 1/2	b)1	c) -1	d)2		
9.	The area included between the curves $y = \frac{1}{x^2 + 1}$ and x-axis is					
	a) $\frac{\pi}{2}$ sq unit	b) π sq unit	c) 2π sq unit	d)None of these		
10.	The area enclosed between the parabola $y = x^2 - x + 2$ and the line $y = x + 2$ in square unit					
	equals					
	a) 8/3	b)1/3	c) 2/3	d)4/3		
11.	Area of region satisfying $x \le 2$, $y \le x $ and $x \ge 0$ is					
	a) 1 sq unit	b) 4 sq unit	c) 2 sq unit	d)None of these		
12.	2. The area bounded by the curves $y = \sqrt{x}$, $2y + 3 = x$ and x-axis in the first quadrant is					

	a) 9	b)27/4	c) 36	d)18			
13.	3. Area enclosed by the curve						
	$\pi[4(x-\sqrt{2})^2+y^2]=8 \text{ is}$						
	a) π sq units	b) 2 sq units	c) 3π sq units	d)4 sq units			
14.	The area in square units of the region bounded by the curve $x^2 = 4y$, the line $x = 2$ and the <i>x</i> -						
	axis, is						
	a) 1	b)2/3	c) 4/3	d)8/3			
15.	The parabola $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines $x = 4$, $y = 4$						
	and the coordinate axes. If S_1, S_2, S_3 are respectively the areas of these parts numbered from top						
	to bottom, then $S_1:S_2:S_3$ is						
	a) 1:1:1	b)2:1:2	c) 1:2:3	d)1:2:1			
16.	The area bounded by the curve $y^2 = 16x$ and line $y = mx$ is $\frac{2}{3}$, then <i>m</i> is equal to						
	a) 3	b)4	c) 1	d)2			
17.	The value of <i>c</i> for which the area of the figure bounded by the curve $y = 8x^2 - x^5$, the straight						
	lines $x = 1$ and $x = c$ and the <i>x</i> -axis is equal to $\frac{16}{3}$ is						
	a) 2	b) $\sqrt{8 - \sqrt{17}}$	c) 3	d) —1			
18.	The area bounded by $y = 2 - x^2$ and $x + y = 0$ is						
	a) $\frac{7}{2}$ sq. units	b) $\frac{9}{2}$ sq. units	c) 9 sq. units	d) None of these			
19	The area bounded by the curve $r = a\cos^3 t$, $y = a\sin^3 t$ is						
17.	$2\pi a^2$						
	a) $\frac{3\pi a}{8}$	b) $\frac{5\pi a}{16}$	c) $\frac{5\pi a}{22}$	d) $3\pi a^2$			
20.	Area bounded by the parabola $x^2 = 4y$ and the line $x = 4y - 2$, is						
	a) 9/8	b)9 <mark>/4</mark>	c) 9/2	d)9/7			