

Class: XIth

Date:

Subject: Maths

DPP No.:3

Topic :-Applications of Intergrals

1.	The area of the smaller segment cut off from the circle $x^2 + y^2 = 9$ by $x = 1$ is				
	a) $\frac{1}{2}$ (9 sec ⁻¹ 3 – $\sqrt{8}$) sq unit		b) $(9 \sec^{-1}(3) - \sqrt{8})$	b) $(9 \sec^{-1}(3) - \sqrt{8})$ sq unit	
	c) $(\sqrt{8} - 9 \sec^{-1} 3)$ sq u	ınit	d) None of these		
2.	, , ,		= x and x + y = 1 is		
	a) 1/3 sq unit		c) 4/3 sq unit	d) 1 sq unit	
3.	The area between the parabola $y^2 = 4ax$ and the line $y = mx$ in square units is				
	a) $\frac{5a^2}{3m}$	$b)\frac{8a^2}{3m^3}$	c) $\frac{7a^2}{4m^2}$	$d)\frac{3a^2}{5m}$	
4.	The area bounded by t	he curves $y = \sin x$ b	etween the ordinates $x =$	$0, x = \pi$ and the x-axis, is	
	a) 2 sq. units	b) 4 sq. units	c) 3 sq. units	d) 1 sq. units	
5.	The area bounded by :	_		, ,	
	a) $6\sqrt{2} + \frac{1}{2}\log 3 + 2\sqrt{2} $		b) $6\sqrt{2} + \frac{1}{2}\log 3 - 2 $	$\sqrt{2}$	
	c) $6\sqrt{2} - \log 3 + 2\sqrt{2} $		d) None of these		
6.	The area bounded by $y = \log x$, x-axis and ordinates $x = 1$, $x = 2$ is				
	$a)\frac{1}{2}(\log 2)^2$	b) log(2/e)	c) $\log(4/e)$	d) log 4	
7.	The area bounded by $y = x^2 + 1$ and the tangents to it drawn from the origin, is				
	a) 8/3 sq. units	b) 1/3 sq. units	c) 2/3 sq. units	d) None of these	
8.					
	•			\boldsymbol{x}	
	a) $\sqrt{(x-1)}$	b) $\sqrt{(x+1)}$	c) $\sqrt{(x^2+1)}$	$d) \frac{x}{\sqrt{(1+x^2)}}$	
9.	The area enclosed between the curves $y = \sin^2 x$ and $y = \cos^2 x$ in the interval $0 \le x \le \pi$ is				
	a) 2 sq unit	b) $\frac{1}{2}$ sq unit	c) 1 sq unit	d) None of these	
10.	The area bounded by $y = \sin^{-1}x$, $x = \frac{1}{\sqrt{2}}$ and x -axis is				
	a) $\left(\frac{1}{\sqrt{2}} + 1\right)$ sq units		b) $\left(1 - \frac{1}{\sqrt{2}}\right)$ sq uints		

c) $\frac{\pi}{4\sqrt{2}}$	sq	units
47/4		

d)
$$\left(\frac{\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} - 1\right)$$
 sq units

- 11. The area between the curves $x = -2y^2$ and $x = 1 3y^2$, is

- b)3/4

- d)2/3
- 12. The area of the region bounded by y = |x 1| and y = 3 |x|, is

- d)1
- 13. The area bounded by y = [x] and the two ordinates x = 1 and x = 1.7 is
 - a) $\frac{17}{10}$

c) $\frac{17}{5}$

- ^{14.} Line x = 1 divides A enclosed by circle $x^2 + y^2 = 16$ in two portions A_1 and $A_2(A_1 > A_2)$, then $\frac{A_1}{A_2}$ is
 - a) 4

b)3

c) 2

d) None of these

- 15. The area enclosed by the curve $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is
 - a) 10π sq unit
- b) 20π sq unit
- c) 5π sq unit
- d) 4π sq unit
- 16. The area of the figure bounded by the curve $|y| = 1 x^2$ is

b)4/3

- d) -5/3

- 17. The area enclosed within the curve |x| + |y| = 1 is
- c) $\sqrt{2}$ sq units
- d) 2 sq units
- a) 1 sq unit b) $2\sqrt{2}$ sq units c) $\sqrt{2}$ sq unit 18. The area bounded by the parabola $y^2 = 4ax$ and $x^2 = 4ay$, is

- b) $\frac{16a^2}{3}$
- d) $\frac{64a^2}{3}$
- 19. The area enclosed between the curves $y = ax^2$ and $x = ay^2 (a > 0)$ is 1 sq unit. Then value of a
 - a) $\frac{1}{\sqrt{3}}$

c) 1

d) $\frac{1}{3}$

- 20. The area bounded by the curves $y = x^3$ and y = x is
 - a) 1/2 sq units
- b) 1/4 sq units
- c) 1/8 sq units
- d)1/16 sq units