Class : XIth
Date :

Subject : Maths
DPP No. :3

Topic :-Applications of Intergrals

1. The area of the smaller segment cut off from the circle $x^{2}+y^{2}=9$ by $x=1$ is
a) $\frac{1}{2}\left(9 \sec ^{-1} 3-\sqrt{8}\right)$ sq unit
b) $\left(9 \sec ^{-1}(3)-\sqrt{8}\right)$ sq unit
c) $\left(\sqrt{8}-9 \sec ^{-1} 3\right)$ sq unit
d) None of these
2. The area of the region bounded by $1-y^{2}=|x|$ and $|x|+|y|=1$ is
a) $1 / 3$ sq unit
b) $2 / 3$ sq unit
c) $4 / 3$ sq unit
d) 1 sq unit
3. The area between the parabola $y^{2}=4 a x$ and the line $y=m x$ in square units is
a) $\frac{5 a^{2}}{3 m}$
b) $\frac{8 a^{2}}{3 m^{3}}$
c) $\frac{7 a^{2}}{4 m^{2}}$
d) $\frac{3 a^{2}}{5 m}$
4. The area bounded by the curves $y=\sin x$ between the ordinates $x=0, x=\pi$ and the x-axis, is
a) 2 sq. units
b) 4 sq. units
c) 3 sq. units
d) 1 sq. units
5. The area bounded by $|x-1| \leq 2$ and $x^{2}-y^{2}=1$, is
a) $6 \sqrt{2}+\frac{1}{2} \log |3+2 \sqrt{2}|$
b) $6 \sqrt{2}+\frac{1}{2} \log |3-2 \sqrt{2}|$
c) $6 \sqrt{2}-\log |3+2 \sqrt{2}|$
d) None of these
6. The area bounded by $y=\log x, x$-axis and ordinates $x=1, x=2$ is
a) $\frac{1}{2}(\log 2)^{2}$
b) $\log (2 / e)$
c) $\log (4 / e)$
d) $\log 4$
7. The area bounded by $y=x^{2}+1$ and the tangents to it drawn from the origin, is
a) $8 / 3$ sq. units
b) $1 / 3$ sq. units
c) $2 / 3$ sq. units
d) None of these
8. The area bounded by the x-axis, the curve $y=f(x)$ and the lines $x=1$ and $x=b$ is equal to ($\sqrt{\left(b^{2}+1\right)}-\sqrt{2}$) for all $b>1$, then $f(x)$ is
a) $\sqrt{(x-1)}$
b) $\sqrt{(x+1)}$
c) $\sqrt{\left(x^{2}+1\right)}$
d) $\frac{x}{\sqrt{\left(1+x^{2}\right)}}$
9. The area enclosed between the curves $y=\sin ^{2} x$ and $y=\cos ^{2} x$ in the interval $0 \leq x \leq \pi$ is
a) 2 sq unit
b) $\frac{1}{2}$ sq unit
c) 1 sq unit
d) None of these
10. The area bounded by $y=\sin ^{-1} x, x=\frac{1}{\sqrt{2}}$ and x-axis is
a) $\left(\frac{1}{\sqrt{2}}+1\right)$ sq units
b) $\left(1-\frac{1}{\sqrt{2}}\right)$ sq uints
c) $\frac{\pi}{4 \sqrt{2}}$ sq units
d) $\left(\frac{\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}-1\right)$ sq units
11. The area between the curves $x=-2 y^{2}$ and $x=1-3 y^{2}$, is
a) $4 / 3$
b) $3 / 4$
c) $3 / 2$
d) $2 / 3$
12. The area of the region bounded by $y=|x-1|$ and $y=3-|x|$, is
a) 2
b) 3
c) 4
d) 1
13. The area bounded by $y=[x]$ and the two ordinates $x=1$ and $x=1.7$ is
a) $\frac{17}{10}$
b) 1
c) $\frac{17}{5}$
d) $\frac{7}{10}$
14. Line $x=1$ divides A enclosed by circle $x^{2}+y^{2}=16$ in two portions A_{1} and $A_{2}\left(A_{1}>A_{2}\right)$, then $\frac{A_{1}}{A_{2}}$ is
a) 4
b) 3
c) 2
d) None of these
15. The area enclosed by the curve $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ is
a) 10π sq unit
b) 20π sq unit
c) 5π sq unit
d) 4π sq unit
16. The area of the figure bounded by the curve $|y|=1-x^{2}$ is
a) $2 / 3$
b) $4 / 3$
c) $8 / 3$
d) $-5 / 3$
17. The area enclosed within the curve $|x|+|y|=1$ is
a) 1 sq unit
b) $2 \sqrt{2}$ sq units
c) $\sqrt{2}$ sq units
d) 2 squnits
18. The area bounded by the parabola $y^{2}=4 a x$ and $x^{2}=4 a y$, is
a) $\frac{8 a^{3}}{3}$
b) $\frac{16 a^{2}}{3}$
c) $\frac{32 a^{2}}{3}$
d) $\frac{64 a^{2}}{3}$
19. The area enclosed between the curves $y=a x^{2}$ and $x=a y^{2}(a>0)$ is 1 sq unit. Then value of a is
a) $\frac{1}{\sqrt{3}}$
b) $\frac{1}{2}$
c) 1
d) $\frac{1}{3}$
20. The area bounded by the curves $y=x^{3}$ and $y=x$ is
a) $1 / 2$ squnits
b) $1 / 4$ sq units
c) $1 / 8$ sq units
d) $1 / 16$ sq units
