

Class : XIth Date : Subject : Maths DPP No. :2

Topic :-Applications of Intergrals

1. The area of the region formed by $x^2 + y^2 - 6x - 4y + 12 \le 0, y \le x$ and $x \le 5/2$ is b) $\frac{\pi}{6} + \frac{\sqrt{3} + 1}{8}$ c) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$ a) $\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$ d) None of these 2. Area bounded by the curve $y = \log_e x, x = 0, y \le 0$ and x-axis is c) 2 sq unit a) 1 sq unit b) 1/2 sq unit d) None of these 3. Area bounded by the curves y = |x - 1|, y = 0 and |x| = 2, is c) 3 b)5 d)6 a) 4 4. The area included between the parabolas $y^2 = 4x$ and $x^2 = 4y$ is (in square units) a) 4/3 b)1/3c) 16/3 d)8/3 5. The area of region bounded by the curves y = |x - 1| and y = 3 - |x| is a) 2 sq units b) 3 sq units c) 4 sq units d) 6 sq 6. The area bounded by the curves $y = x^3$, $y = x^2$ and the ordinates x = 1, x = 2 is c) 4 sq units d)6 sq units a) $\frac{17}{12}$ b) $\frac{12}{13}$ c) $\frac{2}{7}$ d) $\frac{7}{2}$ 7. The area bounded by the graph y = |[x - 3]|, the *x*-axis and the lines x = -2 and x = 3 is([.] denotes the greatest integer function) a) 7 sq unit b) 15 sq unit c) 21 sq unit d)28 sq unit 8. Area bounded by the curve $y^2 = 16x$ and line y = mx is $\frac{2}{3}$ then *m* is equal to a) 3 b)4 d)2 c) 1 9. The area enclosed by y = 3x - 5, y = 0, x = 3 and x = 5 is a) 12 sq units b) 13 sq unit c) $13\frac{1}{2}$ sq unit d) 14 sq unit 10. The area of the region bounded by the curves y = |x - 2|, x = 1, x = 3 and the *x*-axis is a) 1 b)2 c) 3 d)4 11. The area common to the circle $x^2 + y^2 = 64$ and the parabola $y^2 = 4x$ is a) $\frac{16}{3}(4\pi + \sqrt{3})$ sq unit b) $\frac{16}{3}(8\pi - \sqrt{3})$ sq unit c) $\frac{16}{3}(4\pi - \sqrt{3})$ sq unit d) None of these 12. The ratio of the areas between the curves $y = \cos x$ and $y = \cos 2x$ and *x*-axis from x = 0 to $x = \pi/3$ is c) $\sqrt{3}$:1 a) 1:2 d) None of these b)2:1

13. The slope of tangent to a curve
$$y = f(x)$$
 at $(x, f(x))$ is $2x + 1$. If the curve passes through the point $(1, 2)$, then the area of the region bounded by the curve, the *x*-axis and the line $x = 1$ is a) $\frac{5}{6}$ sq unit b) $\frac{6}{5}$ sq unit c) $\frac{1}{6}$ sq unit d) 6 sq unit
14. The area bounded by the curves $y = |x| - 1$ and $y = -|x| + 1$ is a) 1 sq unit b) 2 sq unit c) $2\sqrt{2}$ sq unit d) 4 sq unit
15. The area of smaller portion bounded by $|y| = -x + 1$ and $y^2 = 4x$ is a) 1 sq unit b) 2 sq unit c) 3 sq unit d) None of these
16. If A_1 is the area enclosed by the curve $xy = 1,x$ -axis and the ordinates $x = 1, x = 2;$ and A_2 is the area enclosed by the curve $xy = 1,x$ -axis and the ordinates $x = 1, x = 2;$ and A_2 is the area enclosed by the curve $xy = 1,x$ -axis and the ordinates $x = 2, x = 4$, then a) $A_1 = 2A_2$ b) $A_2 = 2A_1$ c) $A_2 = 3A_1$ d) $A_1 = A_2$
17. The area of the region bounded by the parabola $(y - 2)^2 = x - 1$, the tangent to the parabola at the point (2,3) and the *x*-axis is
a) 6 sq units b) 9 sq units c) 12 sq units d) 3 sq units
18. The area of the region $\{(x,y):x^2 + y^2 \le 1 \le x + y\}$, is
a) $\frac{\pi}{5}$ b) $\frac{\pi}{4}$ c) $\frac{\pi^2}{3}$ d) $\frac{\pi}{4} - \frac{1}{2}$
19. The length of the parabola $y^2 = 12x$ cut off by the latusretum is
a) $6[\sqrt{2} + \log(1 + \sqrt{2})]$ b) $3[\sqrt{2} + \log(1 + \sqrt{2})]$ c) $6[\sqrt{2} - \log(1 + \sqrt{2})]$ d) $3[\sqrt{2} - \log(1 + \sqrt{2})]$
20. The area bounded by $y = \sin^{-1} x = \frac{1}{\sqrt{2}}$ and *x*-axis is
a) $(\frac{1}{\sqrt{2}} + 1)$ sq unit d) $(\frac{\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} - 1)$ sq unit d) $(\frac{\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} - 1)$ sq unit