Class : XIth
Date :

Subject : Maths

DPP No. :2

Topic :-Applications of Intergrals

1. The area of the region formed by $x^{2}+y^{2}-6 x-4 y+12 \leq 0, y \leq x$ and $x \leq 5 / 2$ is
a) $\frac{\pi}{6}-\frac{\sqrt{3}+1}{8}$
b) $\frac{\pi}{6}+\frac{\sqrt{3}+1}{8}$
c) $\frac{\pi}{6}-\frac{\sqrt{3}-1}{8}$
d) None of these
2. Area bounded by the curve
$y=\log _{e} x, x=0, y \leq 0$ and x-axis is
a) 1 sq unit
b) $1 / 2$ sq unit
c) 2 sq unit
d) None of these
3. Area bounded by the curves $y=|x-1|, y=0$ and $|x|=2$, is
a) 4
b) 5
c) 3
d) 6
4. The area included between the parabolas $y^{2}=4 x$ and $x^{2}=4 y$ is (in square units)
a) $4 / 3$
b) $1 / 3$
c) $16 / 3$
d) $8 / 3$
5. The area of region bounded by the curves $y=|x-1|$ and $y=3-|x|$ is
a) 2 sq units
b) 3 sq units
c) 4 sq units
d) 6 sq units
6. The area bounded by the curves $y=x^{3}, y=x^{2}$ and the ordinates $x=1, x=2$ is
a) $\frac{17}{12}$
b) $\frac{12}{13}$
c) $\frac{2}{7}$
d) $\frac{7}{2}$
7. The area bounded by the graph $y=|[x-3]|$, the x-axis and the lines $x=-2$ and $x=3$ is([.] denotes the greatest integer function)
a) 7 sq unit
b) 15 sq unit
c) 21 sq unit
d) 28 sq unit
8. Area bounded by the curve $y^{2}=16 x$ and line $y=m x$ is $\frac{2}{3}$ then m is equal to
a) 3
b) 4
c) 1
d) 2
9. The area enclosed by
$y=3 x-5, y=0, x=3$ and $x=5$ is
a) 12 sq units
b) 13 sq unit
c) $13 \frac{1}{2}$ sq unit
d) 14 sq unit
10. The area of the region bounded by the curves $y=|x-2|, x=1, x=3$ and the x-axis is
a) 1
b) 2
c) 3
d) 4
11. The area common to the circle $x^{2}+y^{2}=64$ and the parabola $y^{2}=4 x$ is
a) $\frac{16}{3}(4 \pi+\sqrt{3})$ sq unit
b) $\frac{16}{3}(8 \pi-\sqrt{3})$ sq unit
c) $\frac{16}{3}(4 \pi-\sqrt{3})$ sq unit
d) None of these
12. The ratio of the areas between the curves $y=\cos x$ and $y=\cos 2 x$ and x-axis from $x=0$ to $x=\pi / 3$ is
a) $1: 2$
b) $2: 1$
c) $\sqrt{3}: 1$
d) None of these
13. The slope of tangent to a curve $y=f(x)$ at $(x, f(x))$ is $2 x+1$. If the curve passes through the point $(1,2)$, then the area of the region bounded by the curve, the x-axis and the line $x=1$ is
a) $\frac{5}{6}$ sq unit
b) $\frac{6}{5}$ sq unit
c) $\frac{1}{6}$ sq unit
d) 6 sq unit
14. The area bounded by the curves $y=|x|-1$ and $y=-|x|+1$ is
a) 1 sq unit
b) 2 sq unit
c) $2 \sqrt{2}$ sq unit
d) 4 sq unit
15. The area of smaller portion bounded by $|y|=-x+1$ and $y^{2}=4 x$ is
a) 1 sq unit
b) 2 sq unit
c) 3 sq unit
d) None of these
16. If A_{1} is the area enclosed by the curve $x y=1, x$-axis and the ordinates $x=1, x=2$; and A_{2} is the area enclosed by the curve $x y=1, x$-axis and the ordinates $x=2, x=4$, then
a) $A_{1}=2 A_{2}$
b) $A_{2}=2 A_{1}$
c) $A_{2}=3 A_{1}$
d) $A_{1}=A_{2}$
17. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
a) 6 sq units
b) 9 sq units
c) 12 sq units
d) 3 sq units
18. The area of the region $\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$, is
a) $\frac{\pi}{5}$
b) $\frac{\pi}{4}$
c) $\frac{\pi^{2}}{3}$
d) $\frac{\pi}{4}-\frac{1}{2}$
19. The length of the parabola $y^{2}=12 x$ cut off by the latusretum is

$$
\text { a) } 6[\sqrt{2}+\log (1+\sqrt{2})] \text { b) } 3[\sqrt{2}+\log (1+\sqrt{2})] \text { c) } 6[\sqrt{2}-\log (1+\sqrt{2})] \text { d) } 3[\sqrt{2}-\log (1+\sqrt{2})]
$$

20. The area bounded by $y=\sin ^{-1} x=\frac{1}{\sqrt{2}}$ and x-axis is
a) $\left(\frac{1}{\sqrt{2}}+1\right)$ sq unit
b) $\left(1-\frac{1}{\sqrt{2}}\right)$ sq unit
c) $\frac{\pi}{4 \sqrt{2}}$ sq unit
d) $\left(\frac{\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}-1\right)$ sq unit
