Class : XIth
Date :

Subject : Maths

DPP No. :10

Topic:-Applications of Intergrals

1. The area bounded by the curves $y=|x|$ and $y=4-|x|$ is
a) 4 sq unit
b) 16 sq unit
c) 2 sq unit
d) 8 sq unit
2. The smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is equal to
a) $2(\pi-2)$
b) $\pi-2$
c) $2 \pi-1$
d) $\pi-1$
3. The area bounded by the curve $y=\sec ^{2} x, y=0$ and $|x|=\frac{\pi}{3}$ is
a) $\sqrt{3}$ sq unit
b) $\sqrt{2}$ sq unit
c) $2 \sqrt{3}$ sq unit
d) None of these
4. The area bounded by the curve $x=4-y^{2}$ and the y-axis is
a) 16 sq units
b) 32 sq units
c) $\frac{32}{3}$ sq units
d) $\frac{16}{3}$ sq units
5. The area bounded by the curve $y=x|x|, x$-axis and the ordinates $x=1, x=-1$ is given by
a) 0
b) $\frac{1}{3}$
c) $\frac{2}{3}$
d) None of these
6. The area of the region bounded by $x^{2}+y^{2}-2 y-3=0$ and $y=|x|+1$, is
a) π
b) 2π
c) 4π
d) $\pi / 2$
7. The area of the region (in square units) bounded by the curve $x^{2}=4 y$, line $x=2$ and x-axis, is
a) 1
b) $2 / 3$
c) $4 / 3$
d) $8 / 3$
8. The area bounded by $x=1, x=2, x y=1$ and x-axis is
a) $(\log 2)$ sq unit
b) 2 sq unit
c) 1 sq unit
d) None of these
9. The area of the region for which $0<y<3-2 x-x^{2}$ and $x>0$, is
a) $\int_{1}^{3}\left(3-2 x-x^{2}\right) d x$
b) $\int_{0}^{3}\left(3-2 x-x^{2}\right) d x$
c) $\int_{0}^{1}\left(3-2 x-x^{2}\right) d x$
d) $\int_{-1}^{3}\left(3-2 x-x^{2}\right) d x$
10. Area bounded by parabola $y^{2}=x$ and straight line $2 y=x$, is
a) $4 / 3$
b) 1
c) $2 / 3$
d) $1 / 3$
11. The area of the triangle formed by the positive x-axis and the normal and tangent to the circle $x^{2}+y^{2}=4 a t(1, \sqrt{3})$, is
a) $\sqrt{3}$
b) $1 / \sqrt{3}$
c) $2 \sqrt{3}$
d) $3 \sqrt{3}$
12. The line $x=\frac{\pi}{4}$ divides the area of the region bounded by $y=\sin x, y=\cos x$ and x-axis ($0 \leq x \leq \frac{x}{2}$) into two regions of areas A_{1} and A_{2}. Then $A_{1}: A_{2}$ equals
a) $4: 1$
b) $3: 1$
c) $2: 1$
d) $1: 1$
13. Area of the region bounded by the curve $y=\left\{\begin{array}{l}x^{2}, x<0 \\ x, x \geq 0\end{array}\right.$ and the line $y=4$ is
a) $\frac{10}{3}$ sq unit
b) $\frac{20}{3}$ sq unit
c) $\frac{40}{3}$ sq unit
d) None of these
14. The area of the closed figure bounded by the curves $y=\cos x, y=1+\frac{2}{\pi} x$ and $x=\pi / 2$, is
a) $\frac{\pi+4}{4}$
b) $\frac{3 \pi-4}{4}$
c) $\frac{3 \pi}{4}$
d) $\frac{\pi}{4}$
15. The area enclosed between the curves $y=x$ and $y=2 x-x^{2}$ is (in square unit)
a) $\frac{1}{2}$
b) $\frac{1}{6}$
c) $\frac{1}{3}$
d) $\frac{1}{4}$
16. If A_{n} be the area bounded by the curve $y=(\tan x)^{n}$ and the lines $x=0, y=0$ and $x=\pi / 4$, then for $x>2$
a) $A_{n}+A_{n-2}=\frac{1}{n-1}$
b) $A_{n}+A_{n-2}<\frac{1}{n-1}$
c) $A_{n}-A_{n-2}=\frac{1}{n-1}$
d) None of these
17. The area cut off from a parabola by any double ordinate is k times the corresponding rectangle contained by that double ordinate and its distance from the vertex, then k is
a) $\frac{2}{3}$
b) $\frac{1}{3}$
c) $\frac{3}{2}$
d) 3
18. The area enclosed between the curves $y^{2}=x$ and $y=|x|$ is
a) $\frac{2}{3}$ sq unit
b) 1 sq unit
c) $\frac{1}{6}$ sq unit
d) $\frac{1}{3}$ sq unit
19. The area of the loop between the curve $y=a \sin x$ and x-axis is
a) a
b) $2 a$
c) $3 a$
d) $4 a$
20. The area of the region bounced by $y^{2}=x$ and $y=|x|$ is
a) $\frac{1}{3}$ sq unit
b) $\frac{1}{6}$ sq unit
c) $\frac{2}{3}$ sq unit
d) 1 sq unit
