

Class : XIth Date : Subject : Maths DPP No. :10

Topic :-Applications of Intergrals

1.	The area bounded by the curves $y = x $ and $y = 4 - x $ is					
	a) 4 sq unit	b) 16 sq unit	c) 2 sq unit	d)8 sq unit		
2.	The smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line $x + y = 2$ is equal to					
	a) 2 (π – 2)	b) $\pi - 2$	c) 2 <i>π</i> −1	d) $\pi - 1$		
3.	The area bounded by the curve $y = \sec^2 x$, $y = 0$ and $ x = \frac{\pi}{3}$ is					
	a) $\sqrt{3}$ sq unit	b) $\sqrt{2}$ sq unit	c) $2\sqrt{3}$ sq unit	d) None of these		
4.	The area bounded by the curve $x = 4 - y^2$ and the y-axis is					
	a) 16 sq units	b) 32 sq units	c) $\frac{32}{3}$ sq units	d) $\frac{16}{3}$ sq units		
5.	The area bounded by the curve $y = x x $, x-axis and the ordinates $x = 1$, $x = -1$ is given by					
	a) 0	b) $\frac{1}{2}$	c) $\frac{2}{2}$	d) None of these		
6.	The area of the region bounded by $x^2 + y^2 - 2y - 3 = 0$ and $y = x + 1$, is					
	a) π	b) 2 <mark>π</mark>	c) 4π	d)π/2		
7.	The area of the region (in square units) bounded by the curve $x^2 = 4y$, line $x = 2$ and x -axis, is					
	a) 1	b)2/3	c) 4/3	d)8/3		
8.	The area bounded by $x = 1$, $x = 2$, $xy = 1$ and x-axis is					
	a) (log 2) sq unit	b)2 sq unit	c) 1 sq unit	d) None of these		
9.	The area of the region for which $0 < y < 3 - 2x - x^2$ and $x > 0$, is					
	a) $\int_{1}^{3} (3-2x-x^2) dx$	b) $\int_{0}^{3} (3-2x-x^2) dx$	c) $\int_{0}^{1} (3-2x-x^2) dx$	d) $\int_{-1}^{3} (3-2x-x^2) dx$		
10.	Area bounded by parabola $y^2 = x$ and straight line $2y = x$, is					
	a) 4/3	b)1	c) 2/3	d)1/3		
11.	The area of the triangle	e formed by the positive	<i>x</i> -axis and the normal a	nd tangent to the circle		
	$x^2 + y^2 = 4 at(1,\sqrt{3})$, is					
	a) $\sqrt{3}$	b) $1/\sqrt{3}$	c) 2 $\sqrt{3}$	d) $3\sqrt{3}$		
12.	The line $x = \frac{\pi}{4}$ divides the area of the region bounded by $y = \sin x$, $y = \cos x$ and x-axis					
	$\left(0 \le x \le \frac{x}{2}\right)$ into two regions of areas A_1 and A_2 . Then $A_1:A_2$ equals					
	a) 4:1	b) 3:1	c) 2:1	d) 1:1		

13.	Area of the region bounded by the curve $y = \begin{cases} x^2, x < 0 \\ x, x \ge 0 \end{cases}$ and the line $y = 4$ is					
	a) $\frac{10}{3}$ sq unit	b) $\frac{20}{3}$ sq unit	c) $\frac{40}{3}$ sq unit	d)None of these		
14.	The area of the closed figure bounded by the curves $y = \cos x$, $y = 1 + \frac{2}{\pi}x$ and $x = \pi/2$, is					
	a) $\frac{\pi+4}{4}$	b) $\frac{3\pi - 4}{4}$	c) $\frac{3\pi}{4}$	d) $\frac{\pi}{4}$		
15.	. The area enclosed between the curves $y = x$ and $y = 2x - x^2$ is (in square unit)					
	a) $\frac{1}{2}$	b) $\frac{1}{6}$	c) $\frac{1}{3}$	d) $\frac{1}{4}$		
16.	If A_n be the area bound	led by the curve $y = (\tan x)$	$(nx)^n$ and the lines $x = 0$,	$y = 0$ and $x = \pi/4$, then		
	for <i>x</i> > 2					
	a) $A_n + A_{n-2} = \frac{1}{n-1}$	$\mathbf{b})A_n + A_{n-2} < \frac{1}{n-1}$	c) $A_n - A_{n-2} = \frac{1}{n-1}$	d)None of these		
17.	The area cut off from a	parabola by any double	ordinate is <i>k</i> times the	corresponding rectangle		
	contained by that double ordinate and its distance from the vertex, then k is					
	a) $\frac{2}{3}$	b) $\frac{1}{3}$	c) $\frac{3}{2}$	d)3		
18.	The area enclosed between the curves $y^2 = x$ and $y = x $ is					
	a) $\frac{2}{3}$ sq unit	b) 1 sq unit	c) $\frac{1}{6}$ sq unit	d) $\frac{1}{3}$ sq unit		
19.	The area of the loop be	etwe <mark>en the</mark> curve <mark>y = a</mark> si	n x and x -axis is	-		
20	a) <i>a</i>	b)2a	c) 3a	d)4a		
20.	a) <i>a</i> The area of the region	b) $2a$ bounced by $y^2 = x$ and y	c) $3a = x $ is	d)4a		