

Class: XIth
Date:

Subject: Maths
DPP No.:6

Topic :-Application of Derivatives

1.	If tangent to the curve $x = at^2$, $y = 2at$ is perpendicular to x -axis, then its point of con					
	a) (a, a)	b) (0, a)	c) (0, 0)	d) ^(a, 0)		
2.	If $y = 4x - 5$ is tangent to the curve $y^2 = px^3 + q$ at (2, 3) then (p,q) is					
	a) (2, 7)	b)(-2,7)	c) $(-2, -7)$	d) $(2, -7)$		
3.	A particle is moving in a straight line. At time t , the distance between the particle from its starting point is given by $x = t - 6t^2 + t^3$. Its acceleration will be zero at					
		b) $t = 2$ units time		t = 4 units time		
4.	If $y = 4x - 5$ is a tangent to the curve $y^2 = px^3 + q$ at $(2, 3)$, then					
	a) $p = 2$, $q = -7$	b) $p = -2$, $q = 7$	c) $p = -2$, $q = -7$	d) $p = 2, q = 7$		
5.	Let the function $g:(-\infty,\infty)\to \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ be given by $g(u)=2\tan^{-1}\left(e^u\right)-\frac{\pi}{2}$. Then, g is					
	a) Even and is strictly increasing in $(0, \infty)$		b) Odd and is strictly decreasing in $(-\infty, \infty)$ Neither even nor odd, but is strictly			
	c) Odd and is strictly in	ncreasing in $(-\infty, \infty)$	d) increasing in $(-\infty, \infty)$			
6.	The tangent to the curve $y = 2x^2 - x + 1$ at a point <i>P</i> is parallel to $y = 3x + 4$, then the					
	coordinates of Pare					
	a) (2, 1)	b)(1, 2)	c) (-1,2)	d) $^{(2,-1)}$		
7.	Let a , b , c be positive real numbers and $ax^2 + b/x^2 \ge 2$ for all $x \in \mathbb{R}^+$. Then,					
	a) $4ab \ge c^2$	b) $4ac \ge b^2$	c) $4bc \ge a^2$	d) $4ac < b^2$		

8.	The function $f(x) = x^4 - 62 x^2 + ax + 9$ attains its maximum value on the interval $[0, 2]$ at $x = 1$. Then, the value of a is					
	a) 120	b) -120	c) 52	d)60		
9.	The point on the curve a) (0, 0)	$\sqrt{x} + \sqrt{y} = \sqrt{a}$, the normal b) $(0, a)$	mal at which is parallel to $(a, 0)$	the x-axis, is d) (a, a)		
10.	The equation of the tangent to curve $y(2x-1)e^{2(1-x)}$ at the points its maximum, is					
		b) $x - 1 = 0$		$d)^{x-y+1=0}$		
11.	If for a function $f(x)$, f) is				
	a) Minimum	b) Maximum	c) Not an extreme poin	td) Extreme point		
12.	The function $f(x) = x + a$ a) A minimum but no n c) Neither maximum n	naximum	b) A maximum but no r d) Both maximum and			
13.	Gas is being pumped into a spherical balloon at the rate of $30ft^3$ /min. Then, the rate at which the radius increases when it reaches the value 15ft is					
4.4	1311	3011	c) $\frac{1}{20}$ ft/min	$d)\frac{1}{25}ft/min$		
14.	The equation of tanger	int to the curve $\frac{x^2}{3} - \frac{y^2}{2} = 1$	1, which is parallel to $y =$			
	a) $y = x \pm 1$	b) $y = x - 1/2$	c) $y = x + 1/2$	$d)^{y=1-x}$		
15.	If the curves $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and $\frac{x^2}{l^2} - \frac{y^2}{m^2} = 1$ cut each other orthogonally, then					
	a) $a^2 + b^2 = l^2 + m^2$	b) $a^2 - b^2 = l^2 - m^2$	c) $a^2 - b^2 = l^2 + m^2$	d) $a^2 + b^2 = l^2 - m^2$		
16.	A point moves along the curve $12y = x^3$ in such a way that the rate of increase of its ordin more than the rate of increase of abscissa. The abscissa of the point lies in the interval					
	a) (– 2, 2)	b) $(-\infty, -2) \cup (2, \infty)$	c) [-2, 2]	d) None of these		
17.	The smallest circle wit	The smallest circle with centre on y-axis and passing through the point(7,3)has radius				
	a) $\sqrt{58}$	b)7	c) 3	d)4		
18.	The point in the interval $[0,2\pi]$, where $f(x)=e^x\sin x$ has maximum slope, is					
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	c) π	$d)\frac{3\pi}{2}$		

- The perimeter of a sector is *p*. The area of the sector is maximum, when its radius is 19.
 - a) \sqrt{p}

- The normal at point (1,1) of the curve $y^2 = x^3$ is parallel to the line a) 3x y 2 = 0 b) 2x + 3y 7 = 0 c) 2x 3y + 1 = 0 d) 2y 3x + 1 = 020.

