Class : XIth
Subject : Maths
Date :
DPP No. : 6

Topic :-Application of Derivatives

1. If tangent to the curve $x=a t^{2}, y=2 a t$ is perpendicular to x-axis, then its point of contact is
a) (a, a)
b) $(0, a)$
c) $(0,0)$
d) $(a, 0)$
2. If $y=4 x-5$ is tangent to the curve $y^{2}=p x^{3}+q$ at $(2,3)$ then (p, q) is
a) $(2,7)$
b) $(-2,7)$
c) $(-2,-7)$
d) $(2,-7)$
3. A particle is moving in a straight line. At time t, the distance between the particle from its starting point is given by $x=t-6 t^{2}+t^{3}$. Its acceleration will be zero at
a) $t=1$ unit time
b) $t=2$ units time
c) $t=3$ units time
d) $t=4$ units time
4. If $y=4 x-5$ is a tangent to the curve $y^{2}=p x^{3}+q$ at $(2,3)$, then
a) $p=2, q=-7$
b) $p=-2, q=7$
c) $p=-2, q=-7$
d) $p=2, q=7$
5. Let the function $g:(-\infty, \infty) \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be given by $g(u)=2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$. Then, g is
a) Even and is strictly increasing in $(0, \infty)$
b) Odd and is strictly decreasing in $(-\infty, \infty)$ Neither even nor odd, but is strictly
c) Odd and is strictly increasing in $(-\infty, \infty)$
d) increasing in $(-\infty, \infty)$
6. The tangent to the curve $y=2 x^{2}-x+1$ at a point P is parallel to $y=3 x+4$, then the coordinates of Pare
a) $(2,1)$
b) $(1,2)$
c) $(-1,2)$
d) $(2,-1)$
7. Let a, b, c be positive real numbers and $a x^{2}+b / x^{2} \geq 2$ for all $x \in R^{+}$. Then,
a) $4 a b \geq c^{2}$
b) $4 a c \geq b^{2}$
c) $4 b c \geq a^{2}$
d) $4 a c<b^{2}$
8. The function $f(x)=x^{4}-62 x^{2}+a x+9$ attains its maximum value on the interval $[0,2]$ at $x=1$. Then, the value of a is
a) 120
b) -120
c) 52
d) 60
9. The point on the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$, the normal at which is parallel to the x-axis, is
a) $(0,0)$
b) $(0, a)$
c) $(a, 0)$
d) (a, a)
10. The equation of the tangent to curve $y(2 x-1) e^{2(1-x)}$ at the points its maximum, is
a) $y-1=0$
b) $x-1=0$
c) $x+y-1=0$
d) $x-y+1=0$
11. If for a function $f(x), f^{\prime}(a)=0, f^{\prime \prime}(a)=0, f^{\prime \prime \prime}(a)>0$, then at $x=a, f(x)$ is
a) Minimum
b) Maximum
c) Not an extreme pointd) Extreme point
12. The function $f(x)=x+\sin x$ has
a) A minimum but no maximum
b) A maximum but no minimum
c) Neither maximum nor minimum
d) Both maximum and minimum
13. Gas is being pumped into a spherical balloon at the rate of $30 \mathrm{ft}^{3} / \mathrm{min}$. Then, the rate at which the radius increases when it reaches the value 15 ft is
a) $\frac{1}{15 \pi} \mathrm{ft} / \mathrm{min}$
b) $\frac{1}{30 \pi} \mathrm{ft} / \mathrm{min}$
c) $\frac{1}{20} \mathrm{ft} / \mathrm{min}$
d) $\frac{1}{25} \mathrm{ft} / \mathrm{min}$
14. The equation of tangent to the curve $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$, which is parallel to $y=x$, is
a) $y=x \pm 1$
b) $y=x-1 / 2$
c) $y=x+1 / 2$
d) $y=1-x$
15. If the curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{l^{2}}-\frac{y^{2}}{m^{2}}=1$ cut each other orthogonally, then
a) $a^{2}+b^{2}=l^{2}+m^{2}$
b) $a^{2}-b^{2}=l^{2}-m^{2}$
c) $a^{2}-b^{2}=l^{2}+m^{2}$
d) $a^{2}+b^{2}=l^{2}-m^{2}$
16. A point moves along the curve $12 y=x^{3}$ in such a way that the rate of increase of its ordinate is more than the rate of increase of abscissa. The abscissa of the point lies in the interval
a) $(-2,2)$
b) $(-\infty,-2) \cup(2, \infty)$ c) $[-2,2]$
d) None of these
17. The smallest circle with centre on y-axis and passing through the point $(7,3)$ has radius
a) $\sqrt{58}$
b) 7
c) 3
d) 4
18. The point in the interval $[0,2 \pi]$, where $f(x)=e^{x} \sin x$ has maximum slope, is
a) $\frac{\pi}{4}$
b) $\frac{\pi}{2}$
c) π
d) $\frac{3 \pi}{2}$
19. The perimeter of a sector is p. The area of the sector is maximum, when its radius is
a) \sqrt{p}
b) $\frac{1}{\sqrt{p}}$
c) $\frac{p}{2}$
d) $\frac{p}{4}$
20. The normal at point $(1,1)$ of the curve $y^{2}=x^{3}$ is parallel to the line
a) $3 x-y-2=0$
b) $2 x+3 y-7=0$
c) $2 x-3 y+1=0$
d) $2 y-3 x+1=0$

