

Class : XIth Date :

Solutions

Subject :MATHS DPP No. : 6

Topic :-Applications of Derivatives

We have,
$$x = at^2 \Rightarrow \frac{dx}{dt} = 2at$$

and
$$y = 2at \Rightarrow \frac{sy}{st} = 2a$$

$$\therefore \text{ Slope of tangent } \frac{dy}{dx} = \frac{2a}{2at} = \frac{1}{t}$$

$$\Rightarrow \frac{1}{t} = \infty$$

$$\Rightarrow t = 0 \Rightarrow \text{Point of contact is } (0, 0)$$

2 **(d**)

Curve is
$$y^2 = px^3 + q$$

$$\therefore 2y \frac{dy}{dx} = 3px^2$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(2,3)} = \frac{3p.4}{2.3}$$

$$\Rightarrow 4 = 2p$$

$$\Rightarrow p=2$$

Also, curve is passing through (2, 3)

$$\therefore 9 = 8p + q$$

$$\Rightarrow q = -7$$

∴
$$(p, q)$$
 is $(2, -7)$

3 **(b**

Given,
$$x = t - 6t^2 + t^3$$

On differentiating, w. r. t. x, we get

$$\frac{dx}{dt} = 1 - 12t + 3t^2$$

Again, differentiating, we get

$$\frac{d^2x}{dt^2} = -12 + 6t$$

When
$$\frac{d^2x}{dt^2} = 0 \Rightarrow t = 2$$
units time

4 **(a)**

Given equation of curve is

$$y^2 = px^3 + q$$

$$\therefore 2y \frac{dy}{dx} = 3px^2$$

$$\therefore \left(\frac{dy}{dx}\right)_{(2,3)} = \frac{3p(2)^2}{2.3} = 2p$$

The equation of tangent at (2, 3) is

$$(y-3) = 2p(x-2)$$

$$\Rightarrow y = 2px - (4p - 3)$$

This is similar to y = 4x - 5

$$\therefore 2p = 4 \text{ and } 4p - 3 = 5$$

$$\Rightarrow p = 2$$
 and $p = 2$

Since, the point (2, 3) lies on the curve

$$\therefore \quad 9 = 8p + q \quad \Rightarrow \quad q = -7 \quad [\because p = 2]$$

5 **(c)**

Given,
$$g(u) = 2\tan^{-1}(e^u) - \frac{\pi}{2}$$
, for $u \in (-\infty, \infty)$

Now,
$$g(-u) = 2\tan^{-1}(e^{-u}) - \frac{\pi}{2}$$

$$=2\left(\cot^{-1}\left(e^{u}\right)\right)-\frac{\pi}{2}$$

$$=2\left(\frac{\pi}{2}-\tan^{-1}(e^{u})\right)-\frac{\pi}{2}$$

$$=-g(u)$$

$$\therefore$$
 $g(u)$ Is an odd function.

Also,
$$g'(u) = 2\frac{1}{1 + (e^u)^2} e^u - 0 > 0$$

Which is strictly increasing in $(-\infty, \infty)$

6 **(**b

Given curve is
$$y = 2x^2 - x + 1$$

Let the coordinate of P are (h, k)

On differentiating w.r.t. x, we get

$$\frac{dy}{dx} = 4x - 1$$

At the point (h, k), the slope

$$= \left(\frac{dy}{dx}\right)_{(h,k)} = 4h - 1$$

Since, the tangent is parallel to the given line y = 3x + 4

$$\Rightarrow 4h - 1 = 3 \Rightarrow h = 1, k = 2$$

 \therefore Coordinates of point *P* are (1, 2)

7 **(a)**

Let
$$f(x) = ax^2 + \frac{b}{x^2} - c$$
, where a, b, $c > 0$ and $x > 0$

Then,
$$f'(x) = 2ax - \frac{2b}{x^3}$$
 and $f''(x) = 2a + \frac{6b}{x^4}$

For local maximum or minimum, we must have

$$f'(x) = 0 \Rightarrow x^4 = \frac{b}{a} \Rightarrow x = \pm \left(\frac{b}{a}\right)^{1/4}$$

Clearly,
$$f''\left\{\pm \left(\frac{b}{a}\right)^{1/4}\right\} = 2a + 6a > 0$$

Therefore, $x = \pm \left(\frac{b}{a}\right)^{1/4}$ are points of local minimum

Local minimum value of f(x) is given by

$$f\left\{\left(\frac{b}{a}\right)^{1/4}\right\} = a\left(\frac{b}{a}\right)^{1/2} + b\left(\frac{a}{b}\right)^{1/2} - c = 2\sqrt{ab} - c$$

But, it is given that

$$f(x) \ge 0$$
 for all $x \left[\because ax^2 + \frac{b}{x^2} \ge c \right]$

$$\therefore 2\sqrt{ab} - c \ge 0 \Rightarrow 4ab \ge c^2$$

8

Since $f(x) = x^4 - 62 x^2 + ax + 9$ attains its maximum at x = 1

$$f'(x) = 0$$
 at $x = 1$

$$\Rightarrow f'(x) = 4 x^3 - 124 x + a = 0 \text{ at } x = 1$$

$$\Rightarrow$$
4 - 124 + $a = 0 \Rightarrow$ $a = 120$

9 (b)

On differentiating given curve w.r.t. *x*, we get

$$\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{y}}$$

$$\Rightarrow \quad \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$$

The normal is parallel to x-axis, if

$$-\left(\frac{dx}{dy}\right)_{(x_1, y_1)} = 0 \quad \Rightarrow \quad \sqrt{\frac{x_1}{y_1}} = 0 \quad \Rightarrow \quad x_1 = 0$$

Since, the point (x_1, y_1) lies on a curve

$$\therefore \quad \sqrt{x_1} + \sqrt{y_1} = \sqrt{a}$$

$$\Rightarrow 0 + \sqrt{y_1} = \sqrt{a}$$
 [from Eq. (ii)]

$$\Rightarrow$$
 $y_1 = a$

 \therefore Required point is (0, a)

10 (a)

$$y = (2x - 1)e^{2(1-x)}$$

$$\Rightarrow \frac{dy}{dx} = 2e^{2(1-x)} - 2(2x-1)e^{2(1-x)}$$

$$=2e^{2(1-x)}(2-2x)$$

$$=4e^{2(1-x)}(1-x)$$

Put,
$$\frac{dy}{dx} = 0 \Rightarrow x = 1$$

Now,
$$\frac{d^2y}{dx^2} = -8e^{2(1-x)}(1-x) - 4e^{2(1-x)}$$

$$\Rightarrow \left(\frac{d^2y}{dx^2}\right)_{x=1} = -4 < 0$$

So, y is maximum at x = 1, when x = 1, y = 1.

Thus, the point of maximum is (1,1).

The equation of the tangent at (1,1) is

...(ii)

$$y - 1 = 0(x - 1) \Rightarrow y = 1$$

11 **(c)**

If f'''(a) > 0, then it is not an extreme point

12 **(b**)

Given function is $f(x) = x + \sin x$

On differentiating w.r.t. x, we get

$$f'(x) = 1 + \cos x$$

For maxima or minima put f'(x) = 0

$$\Rightarrow 1 + \cos x = 0 \Rightarrow \cos x = -1 \Rightarrow x = \pi$$

Again differentiating w.r.t. *x*, we get

$$f''(x) = -\sin x$$
, at $x = \pi f''(\pi) = 0$

Again differentiating w.r.t. x, we get $f'''(x) = -\cos x$,

$$f'''(\pi) = 1$$

At $x = \pi$, f(x) is minimum

13 **(b**)

Let $V = \frac{4}{3}\pi r^3 \Rightarrow \frac{dV}{dt} 4\pi r^2 \frac{dr}{dt}$

$$\Rightarrow \frac{dr}{dt} = \frac{30}{4 \times \pi \times 15 \times 15} = \frac{1}{30\pi} ft / \min\left[:: \frac{dV}{dt} = 30, r = 15 \right]$$

14 (a

Given, $\frac{x^2}{3} - \frac{y^2}{2} = 1$...(i)

$$\Rightarrow \frac{2x}{3} - y\frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{2x}{3y}$$

Now, slope of the line y = x is 1

Since, tangent is parallel to given line, then

$$\frac{2x}{3y} = 1 \quad \Rightarrow \quad x = \frac{3y}{2} \quad ...(ii)$$

From Eqs. (i) and (ii), we get $y = \pm 2$

- \therefore Points of contact are (3, 2) and (-3, -2)
- ∴ equations of tangents are

$$y - 2 = (x - 3) \quad \Rightarrow \quad x - y - 1 = 0$$

and
$$y+2=x+3 \Rightarrow x-y+1=0$$

15 **(c)**

The two curves are

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 ...(i) and, $\frac{x^2}{l^2} - \frac{y^2}{m^2} = 1$...(ii)

Differentiating with respect to *x*, we get

$$\left(\frac{dy}{dx}\right)_{C_1} = -\frac{b^2}{a^2}\frac{x}{y}, \left(\frac{dy}{dx}\right)_{C_2} = \frac{m^2}{l^2}\frac{x}{y}$$

The two curves intersect orthogonally, iff.

$$\left(\frac{dy}{dx}\right)_{C_1} \left(\frac{dy}{dx}\right)_{C_2} = -1$$

$$\Rightarrow -\frac{b^2}{a^2} \frac{x}{y} \times \frac{m^2}{l^2} \frac{x}{y} = -1$$

$$\Rightarrow m^2b^2x^2 = a^2l^2y^2 \quad ...(iii)$$

Subtracting (ii) from (i), we get

$$x^{2}\left(\frac{1}{a^{2}} - \frac{1}{l^{2}}\right) + y^{2}\left(\frac{1}{b^{2}} + \frac{1}{m^{2}}\right) = 0$$
 ...(iv)

From (iii) and (iv), we get

$$\frac{1}{m^2b^2} \left(\frac{1}{a^2} - \frac{1}{l^2} \right) = -\frac{1}{a^2l^2} \left(\frac{1}{b^2} + \frac{1}{m^2} \right)$$

$$\Rightarrow l^2 - a^2 = -b^2 - m^2 \Rightarrow a^2 - b^2 = l^2 + m^2$$

16 **(b)**

We have.

$$\frac{dy}{dt} > \frac{dx}{dt}$$
, $\frac{dy}{dt} > 0$ and $\frac{dx}{dt} > 0$

Now, $12y = x^3$

$$\Rightarrow 12 \frac{dy}{dt} = 3x^2 \frac{dx}{dt} \Rightarrow 3\left(x^2 \frac{dx}{dt} - 4 \frac{dy}{dt}\right) = 0 \Rightarrow x^2 \frac{dx}{dt} = 4 \frac{dy}{dt}$$

We have,

$$\frac{dy}{dt} > \frac{dx}{dt}$$

$$\Rightarrow \frac{x^2}{4} \frac{dx}{dt} > \frac{dx}{dt}$$

$$\Rightarrow (x^2 - 4)\frac{dx}{dt} > 0 \Rightarrow x^2 - 4 > 0 \Rightarrow x \in (-\infty, -2) \cup (2, \infty)$$

17 **(b**

Let the centre of circle on y-axis be (0.k).

Let
$$d = \sqrt{(7-0)^2 + (3-k)^2}$$

 $\Rightarrow d^2 = 7^2 + (3-k)^2 = D$ (say

On differentiating w. r. t. k, we get

$$\frac{dD}{dk} = 0 + 2(3 - k)(-1)$$

Put
$$\frac{dD}{dk} = 0 \Rightarrow k = 3$$

Now,
$$\frac{d^2D}{dk^2} = 2 > 0$$
 minima,

∴ Minimum value at k=3 is d=7

Hence, minimum circle of radius 7.

$$f(x) = e^x \sin x$$

$$f'(x) = e^x \cos x + \sin x e^x$$

$$f''(x) = -e^x \sin x + \cos x e^x + e^x \cos x + e^x \sin x$$

 $2e^x cos x$

For maximum slope

$$f''(x) = 0$$

$$\Rightarrow 2e^x \cos x = 0$$

$$\Rightarrow$$
 $\cos x = 0$

$$\Rightarrow x = \frac{\pi}{2}, \frac{3\pi}{2}, \forall x \in [0, 2\pi]$$

$$f'''(x) = 2 \qquad \left[-e^x \sin x + e^x \cos x \right]$$

at
$$x = \frac{\pi}{2}$$
, $f'''(x) < 0$

and at
$$x = \frac{3\pi}{2}f'''(x) > 0$$

 $\therefore \text{ slop is maximum at } x = \frac{\pi}{2}$

19 **(d)**

 \therefore Perimeter of a sector = p

Let AOB be the sector with radius r

If angle of the sector be θ radius, then area of sector,

$$A = \frac{1}{2}r^2\theta \quad ...(i)$$

And length of arc, $s = r\theta$

$$\Rightarrow \theta = \frac{s}{r}$$

∴ perimeter of the sector

$$p = r + s + r = 2r + s$$
 ...(ii)

On subtracting $\theta = \frac{s}{r}$ in Eq. (i), we get

$$A = \left(\frac{1}{2}r^2\right)\left(\frac{s}{r}\right) = \frac{1}{2}rs$$

$$\Rightarrow s = \frac{2A}{r}$$

Now, on substituting the value of s in Eq. (ii), we get

$$p = 2r + \left(\frac{2A}{r}\right) \Rightarrow 2A = pr - 2r^2$$

On differentiating w.r.t. r, we get

$$2\frac{dA}{dr} = p - 4r$$

For the maximum area, put

$$2\frac{dA}{dr} = 0 \Rightarrow p - 4r = 0 \Rightarrow r = \frac{p}{4}$$

Given,
$$y^2 = x^3$$

On differentiating w.r.t x, we get

$$2y\frac{dy}{dx} = 3x^2$$

$$\Rightarrow \frac{dy}{dx} = \frac{3x^2}{2y} \Rightarrow \left(\frac{dy}{dx}\right)_{(1,1)} = \frac{3}{2}$$

 \therefore Equation of normal at point (1, 1) is

$$y - 1 = -\frac{2}{3}(x - 1)$$

$$\Rightarrow$$
 2 x + 3 y = 5

Hence, the equation of line parallel to above line will be in option (b), *ie*, 2x + 3y = 7

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	D	В	A	C	В	A	A	В	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	В	В	A	С	В	В	В	D	В

