

Class : XIth Date : Subject : Maths DPP No. :5

Topic :-Application of Derivatives

1. A population p(t) of 1000 bacteria introduced into nutrient medium grows according to the relation $p(t) = 1000 + \frac{1000t}{100 + t^2}$. The maximum size of this bacterial population is

	a) 1100	b) 1250	c) 1050	d) 5250				
2.	If $f'(x) = (x - a)^{2n}(x - $	$(b)^{2m+1}$ where $m, n \in \mathbb{N}$, then					
	 a) x = b is a point of minimum b) x = b is a point of maximum c) x = b is a point of inflexion d) None of these 							
3.	A point is moving on $y = 4 - 2x^2$. The x – coordinate of the point is decreasing at the rate							
	unit per second. Then, the rate at which y-coordinate of the point is changing when the point is							
	at (1,2)is							
	a) 5 units	b) 10 units	c) 15 units	d) 20 units				

- 4. The point of the curve $y^2 = 2(x 3)$ at which the normal is parallel to line y 2x + 1 = 0
 - a) (5, 2) b) $\left(-\frac{1}{2}, -2\right)$ c) (5, -2) d) $\left(\frac{3}{2}, 2\right)$

5. The function $f(x) = \frac{x}{1+|x|}$ is

7.

a) Strictly increasing	b) Strictly decreasing
c) Neither increasing nor decreasing	d) Not differential at $x = 0$

6. The function $f(x) = 2x^3 - 3x^2 + 90x + 174$ is increasing in the interval

a)
$$\frac{1}{2} < x < 1$$
 b) $\frac{1}{2} < x < 2$ c) $3 < x < \frac{59}{4}$ d) $-\infty < x < \infty$
Let $f(x) = \begin{cases} |x|, & \text{for } 0 < |x| \le 2\\ 1, & \text{for } x = 0 \end{cases}$, then at $x = 0, f$ has

a) A local maximum b) A local minimum c) No local extremum d) No local maximum

8. The set of values of *a* for which the function $f(x) = x^2 + ax + 1$ is an increasing function on [1, 2] is

a)
$$(-2, \infty)$$
 b) $[-4, \infty)$ c) $[-\infty, -2)$ d) $(-\infty, 2]$

- 9. A particle moves along the curve $y = x^2 + 2x$. Then, The point on the curve such that x and y coordinates of the particle change with the same rate is
 - a) (1,3) b) $\left(\frac{1}{2}, \frac{5}{2}\right)$ c) $\left(-\frac{1}{2}, -\frac{3}{4}\right)$ d) (-1, -1)
- 10. Given $P(x) = x^4 + ax^3 + bx^2 + cx + d$ such that x = 0 is the only real root of P'(x) = 0.If P(-1) < P(1), then in the interval [-1,1]
 - a) P(-1) is the minimum and P(1) is the maximum of P.
 - b) P(-1) is not minimum but P(1) is the maximum of P.
 - c) P(-1) is the minimum and P(1) is not the maximum of P.
 - Neither P(-1) is the minimum nor P(1) is not the maximum of P.
- 11. If the equation $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x = 0$ has a positive root α , then the equation

$$n a_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + ... + a_1 = 0$$
 has

a) A positive root less than α
b) A positive root larger than α
c) A negative root
d) No positive root

12.	If the error committed in measuring the radius of the circle is 0.05%, then the corresponding error in calculating the area is						
	a) 0.05%	b)0.0025%	c) 0.25%	d)0.1%			
13.	The edge of a cube is equal to the radius of the sphere. If the rate at which the volume of the						
	cube is increasing is equal to λ , then the rate of increase of volume of the sphere is						
	a) $\frac{4\pi\lambda}{3}$	b) $4\pi\lambda$	c) $\frac{\lambda}{3}$	d) None of these			
14.	Tangent is drawn to ellipse $\frac{x^2}{27} + y^2 = 1$ at $(3\sqrt{3}\cos\theta, \sin\theta)$ (where $\theta \in (0, \pi/2)$). Then the						
	value of $ heta$ such that sum of intercepts on axes made by this tangent is minimum, is						
	a)π/3	b)π/6	c) π/8	d) $^{\pi/4}$			
15.	Roll's theorem is not applicable to the function $f(x) = x $ for $-2 \le x \le 2$ because						
a) <i>f</i> is continuous for $-2 \le x \le 2$ b) <i>f</i> is not derivable for $x = 0$							
	c) $f(-2) = f(2)$		d) f is not a constant	function			
16.	The abscissa of the po	oint on the curve					
	$y = a(e^{x/a} + e^{-x/a})$ Where the tangent is	parall <mark>el to t</mark> he x-axis, is					
	a) 0	b) <i>a</i>	c) 2a	d) ^{-2a}			
17.	The value of <i>a</i> in order that $f(x) = \sin x - \cos x - ax + b$ decreases for all real values of <i>x</i> is						
	given by						
	a) $a \ge \sqrt{2}$	b) $a < \sqrt{2}$	c) <i>a</i> ≥ 1	d) <i>a</i> < 1			
18.	Let $f(x) = 1 + 2x^2 + $	Let $f(x) = 1 + 2x^2 + 2^2x^4 + \dots + 2^{10}x^{20}$. Then, $f(x)$ has					
19.	a) More than one minimum c) At least one maximum If the subnormal at any point on $y = a^{1-n}x^n$ is c		b) Exactly one minimum d) None of the above of constant length, then the value of <i>n</i> , is				
20.	a) 1 The normal to the cur a) (<i>a</i> , 0)	b) $1/2$ rve $x = a(1 + \cos \theta), y =$ b) (0, a)	c) 2 = asin θ at θ always pass c) (0, 0)	d) -2 tes through the fixed point d) (<i>a</i> , <i>a</i>)			