

Class : XIth
Date :

**Solutions** 

Subject :MATHS DPP No. : 5

# **Topic :-Applications of Derivatives**

$$p(t) = 1000 + \frac{1000t}{100 + t^2}$$
$$(100 + t^2)(1000) - 100$$

$$\Rightarrow p'(t) = 0 + \frac{(100 + t^2)(1000) - 1000t(2t)}{(100 + t^2)^2}$$

$$=1000 \frac{(100-t^2)}{\left(100+t^2\right)^2}$$

Put p'(t) = 0 for maxima or minima

$$\Rightarrow 100 - t^2 = 0$$

$$\Rightarrow$$
  $t = \pm 10$ 

Now, 
$$p''(t) = 1000$$

$$\times \left[ \frac{(100+t^2)^2(-2t) - (100-t^2)2(100+t^2)2t}{(100+t^2)^4} \right]$$

$$=1000t \frac{[(100+t^2)(-2)-(100-t^2)(4)]}{(100+t^2)^3}$$

$$= -1000t \; \frac{[600 - 2t^2]}{\left(100 + t^2\right)^3}$$

At 
$$t = 10$$
,  $p''(t) < 0$ 

∴ The maximum value is

$$p(10) = 1000 + \frac{10000}{100 + 100}$$
$$= 1000 + \frac{10000}{200} = 1050$$

We have,

$$f'(x) = (x - a)^{2n}(x - b)^{2m+1}$$

$$f'(x) = 0 \Rightarrow x = a, b$$

For 
$$x = b - h$$
, we have

$$f'(x) = (b - h - a)^{2n}(-h)^{2m+1} < 0$$

and for 
$$x = b + h$$
, we have

$$f'(x) = (b + h - a)^{2n} h^{2m+1} > 0$$

Thus, as x passes through b, f'(x) changes sign from negative Hence, x = b is a point of minimum

# 3 **(d)**

Given equation of curve is

$$y = 4 - 2x^{2}$$

$$\Rightarrow \frac{dy}{dt} = -4x \frac{dx}{dt}$$

Given 
$$\frac{dx}{dt} = -5$$
, at point (1,2)

$$\therefore \frac{dy}{dt} = -4(1)(-5) = 20 \text{unit/s}$$

# 4 **(c)**

Given 
$$y^2 = 2(x-3)$$
 ...(i)

$$\Rightarrow 2y \frac{dy}{dx} = 2 \Rightarrow \frac{dy}{dx} = \frac{1}{y}$$

Slope of the normal  $=\frac{-1}{(dy/dx)}=-y$ 

Slope of the given line=2

$$\therefore y = -2$$

From Eq. (i), x = 5

 $\therefore$  Required point is (5, -2)

#### 5 **(a**

Given, 
$$f(x) = \frac{x}{1+|x|}$$

$$f'(x) = \frac{(1+|x|).1 - x.\frac{|x|}{x}}{(1+|x|)^2}$$

$$=\frac{1}{(1+|x|)^2} > 0 \forall x \in R$$

 $\Rightarrow f(x)$  is strictly increasing

#### 6 **(d)**

Given, 
$$f(x) = 2x^2 - 3x^2 + 90x + 174$$

$$f'(x)6x^2 - 6x + 90$$

Now, 
$$D = b^2 - 4ac = 36 - 4 \times 6 \times 90 < 0$$

$$f'(x) > 0 \forall x \in (-\infty, \infty)$$

## 7 **(a)**

Given,

$$f(x) = \begin{cases} |x|, & \text{for } 0 < |x| \le 2\\ 1, & \text{for } x = 0 \end{cases}$$

It is clear from the graph that f(x) has local maximum.



8 **(a)** 

We have,

$$f(x) = x^2 + ax + 1$$

$$\Rightarrow f'(x) = 2x + a$$

For f(x) to be increasing on [1, 2], we must have

$$f'(x) > 0$$
 for all  $x \in R$ 

Now,

$$f'(x) = 2x + a$$

$$\Rightarrow f''(x) = 2 > 0$$
 for all  $x \in R$ 

$$\Rightarrow f'(x)$$
 is increasing for all  $x \in R$ 

$$\Rightarrow f'(x)$$
 is increasing on [1, 2]

$$\Rightarrow f'(1)$$
 is the minimum value of  $f(x)$  in [1, 2]

Thus,

$$f'(x) > 0$$
 for all  $x \in [1, 2]$ 

$$\Rightarrow f'(1) > 0$$

$$\Rightarrow 2 + a > 0 \Rightarrow a > -2 \Rightarrow a \in (-2, \infty)$$

9 **(c)** 

$$\frac{dx}{dt} = \frac{dy}{dt}$$

Given equation of curve is

$$y = x^2 + 2x$$

$$\Rightarrow \frac{dy}{dt} = (2x+2)\frac{dx}{dt}$$

$$\Rightarrow 1 = 2x + 2$$

$$\Rightarrow x = -1/2, y = -3/4$$

$$\therefore$$
 point on the curve is  $\left(-\frac{1}{2}, -\frac{3}{4}\right)$ .

10 **(b)** 

Given, 
$$p(x) = x^4 + ax^3 + bx^2 + cx + d$$

$$\Rightarrow p'(x) = 4x^3 + 3ax^2 + 2bx + c$$

$$\therefore x = 0$$
 is a solution for p'(x)=0,

$$\Rightarrow c = 0$$

$$p(x) = x^4 + ax^3 + bx^2 + d$$
 ...(i)

Also, we have 
$$p(-1) < p(1)$$

$$\Rightarrow 1 - a + b + d < 1 + a + b + d$$

$$\Rightarrow a > 0$$

$$p'(x) = 0$$
, only when x=0 and  $p(x)$  is differentiable in (-1,1)

, we should have the maximum and minimum

at the

points 
$$x = -1.0$$
 and 1 only

Also ,we have 
$$p(-1) < p(1)$$

$$\therefore \text{ Maximum of } p(x) = \max\{p(0), p(1)\}\$$

And minimum of  $P(x)=Min \{P(-1), P(0)\}$ 

In the interval [0,1]

$$p'(x) = 4x^3 + 3ax^2 + 2bx$$
  
=  $x(4x^2 + 3ax + 2b)$ 

$$p'(x)$$
 has only one rootx = 0,then  $4x^2 + 3ax + 2b = 0$  has

No real roots.

$$\therefore (3a)^2 - 32b < 0$$

$$\Rightarrow \frac{3a^2}{32} < b$$

$$\therefore b > 0$$

Thus, we have a>0 and b>0

$$p'(x) = 4x^3 + 4ax^2 + 2bx > 0, \forall x \in (0,1)$$

Hence 
$$p(x) = p(1)$$

Similarly,p(x) is decreasing in [-1,0].

Therefore, Minimum p(x) does not occur at x = -1.



$$p(t) = 1000 + \frac{1000t}{100 + t^2}$$

$$\Rightarrow p'(t) = 0 + \frac{(100 + t^2)(1000) - 1000t(2t)}{(100 + t^2)^2}$$

$$= 1000 \frac{(100 - t^2)}{(100 + t^2)^2}$$

Put p'(t) = 0 for maxima or minima

$$\Rightarrow$$
 100 -  $t^2 = 0$ 

$$\Rightarrow$$
  $t = \pm 10$ 

Now, 
$$p''(t) = 1000$$

$$\times \left[ \frac{\left(100 + t^2\right)^2(-2t) - \left(100 - t^2\right)2(100 + t^2)2t}{\left(100 + t^2\right)^4} \right]$$

$$=1000t \frac{[(100+t^2)(-2)-(100-t^2)(4)]}{(100+t^2)^3}$$

$$= -1000t \frac{[600 - 2t^2]}{(100 + t^2)^3}$$

At 
$$t = 10$$
,  $p''(t) < 0$ 

∴ The maximum value is

$$p(10) = 1000 + \frac{10000}{100 + 100}$$
$$= 1000 + \frac{10000}{1000} = 1050$$

$$=1000 + \frac{10000}{200} = 1050$$

$$f'(x) = (x - a)^{2n}(x - b)^{2m+1}$$

$$f'(x) = 0 \Rightarrow x = a, b$$

For x = b - h, we have

$$f'(x) = (b - h - a)^{2n}(-h)^{2m+1} < 0$$

and for x = b + h, we have

$$f'(x) = (b + h - a)^{2n} h^{2m+1} > 0$$

Thus, as x passes through b, f'(x) changes sign from negative

Hence, x = b is a point of minimum

13 **(d)** 

Given equation of curve is

$$y = 4 - 2x^2$$

$$\Rightarrow \frac{dy}{dt} = -4x \frac{dx}{dt}$$

Given 
$$\frac{dx}{dt} = -5$$
, at point (1,2)

$$\therefore \frac{dy}{dt} = -4(1)(-5) = 20 \text{unit/s}$$

14 **(c**)

Given 
$$y^2 = 2(x - 3)$$
 ...(i)

$$\Rightarrow 2y \frac{dy}{dx} = 2 \Rightarrow \frac{dy}{dx} = \frac{1}{y}$$

Slope of the normal  $=\frac{-1}{(dy/dx)}=-y$ 

Slope of the given line=2

$$\therefore y = -2$$

From Eq. (i), x = 5

 $\therefore$  Required point is (5, -2)

15 **(a** 

Given, 
$$f(x) = \frac{x}{1 + |x|}$$

$$f'(x) = \frac{(1+|x|).1 - x.\frac{|x|}{x}}{(1+|x|)^2}$$

$$=\frac{1}{\left(1+|x|\right)^{2}}>0\,\forall\;x\in R$$

$$\Rightarrow$$
  $f(x)$  is strictly increasing

16 **(d)** 

Given, 
$$f(x) = 2x^2 - 3x^2 + 90x + 174$$

$$f'(x)6x^2 - 6x + 90$$

Now, 
$$D = b^2 - 4ac = 36 - 4 \times 6 \times 90 < 0$$

$$\therefore f'(x) > 0 \forall x \in (-\infty, \infty)$$

17 **(a)** 

Given,

$$f(x) = \begin{cases} |x|, & \text{for } 0 < |x| \le 2\\ 1, & \text{for } x = 0 \end{cases}$$

It is clear from the graph that f(x) has local maximum.



18 **(a)** 

We have,

$$f(x) = x^2 + ax + 1$$

$$\Rightarrow f'(x) = 2x + a$$

For f(x) to be increasing on [1, 2], we must have

$$f'(x) > 0$$
 for all  $x \in R$ 

Now,

$$f'(x) = 2x + a$$

$$\Rightarrow f''(x) = 2 > 0$$
 for all  $x \in R$ 

$$\Rightarrow f'(x)$$
 is increasing for all  $x \in R$ 

$$\Rightarrow f'(x)$$
 is increasing on [1, 2]

 $\Rightarrow f'(1)$  is the minimum value of f(x) in [1, 2]

Thus,

$$f'(x) > 0$$
 for all  $x \in [1, 2]$ 

$$\Rightarrow f'(1) > 0$$

$$\Rightarrow$$
2 +  $a$  > 0 $\Rightarrow$  $a$  > -2 $\Rightarrow$  $a \in (-2, \infty)$ 

19 **(c)** 

$$\frac{dx}{dt} = \frac{dy}{dt}$$

Given equation of curve is

$$y = x^2 + 2x$$

$$\Rightarrow \frac{dy}{dt} = (2x+2)\frac{dx}{dt}$$

$$\Rightarrow 1 = 2x + 2$$

$$\Rightarrow x = -1/2, y = -3/4$$

$$\therefore$$
 point on the curve is  $\left(-\frac{1}{2}, -\frac{3}{4}\right)$ .

## 20 **(b)**

Given, 
$$p(x) = x^4 + ax^3 + bx^2 + cx + d$$

$$\Rightarrow p'(x) = 4x^3 + 3ax^2 + 2bx + c$$

$$x = 0$$
 is a solution for p'(x)=0,

$$\Rightarrow c = 0$$

$$p(x) = x^4 + ax^3 + bx^2 + d$$
 ...(i)

Also, we have 
$$p(-1) < p(1)$$

$$\Rightarrow$$
 1 - a + b + d < 1 + a + b + d

$$\Rightarrow a > 0$$

$$p'(x) = 0$$
, only when  $x=0$  and  $p(x)$  is differentiable in  $(-1,1)$ , we should have  $e$  the maximum and minimum

at the

points 
$$x = -1.0$$
 and 1 only

Also ,we have 
$$p(-1) < p(1)$$

$$\therefore \text{Maximum of } p(x) = \max\{p(0), p(1)\}\$$

And minimum of 
$$P(x)=Min \{P(-1), P(0)\}$$

In the interval [0,1]

$$p'(x) = 4x^3 + 3ax^2 + 2bx$$

$$=x(4x^2+3ax+2b)$$

$$\therefore p'(x) has only one \ rootx = 0, then \ 4x^2 + 3ax + 2b = 0 \ has$$

No real roots.

$$\therefore$$
  $(3a)^2 - 32b < 0$ 

$$\Rightarrow \frac{3a^2}{32} < k$$

$$\therefore b > 0$$

Thus, we have a>0 and b>0

$$p'(x) = 4x^3 + 4ax^2 + 2bx > 0, \forall x \in (0,1)$$

Hence 
$$p(x) = p(1)$$

Similarly,p(x) is decreasing in [-1,0].

Therefore, Minimum p(x) does not occur at x = -1.

| ANSWER-KEY |    |    |    |    |    |    |    |    |    |    |
|------------|----|----|----|----|----|----|----|----|----|----|
| Q.         | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| A.         | С  | A  | D  | С  | A  | D  | A  | A  | С  | В  |
|            |    |    |    |    |    |    |    |    |    |    |
| Q.         | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A.         | A  | D  | A  | В  | В  | A  | A  | В  | В  | A  |
|            |    |    |    |    |    |    |    |    |    |    |

