

Class : XIth Date : Subject : Maths DPP No. :4

Topic :-Application of Derivatives

1. The set $\{x^3 - 12x: -3 \le x \le 3\}$ is equal to

a)
$$\{x: -16 \le x \le 16\}$$
 b) $\{x: -12 \le x \le 12\}$ c) $\{x: -9 \le x \le 9\}$ d) $\{x: 0 \le x \le 10\}$

2. If $xy = a^2$ and $S = b^2x + c^2y$ where *a*, *b* and *c* are constants, then the minimum value of *S* is

	a) <i>abc</i>	b)√ <i>a bc</i>	c) 2 <i>abc</i>	d)None of these		
3.	Let $g(x) = f(x) + f'(1-x)$ and $f''(x) < 0, 0 \le x \le 1$. Then					
	a) $g(x)$ increases on [1/2,1] and decreases on [0,1/2] b) $g(x)$ decreases on [0,1] c) $g(x)$ increases on [0,1] d) $g(x)$ increases on [0,1/2] and decreases on [1/2,1]					
4.	Select the correct state a) Strictly increasing in c) Decreases in the inte	the interval $\left(\frac{1}{2}, 2\right)$	(d) The function $f(x) = xe^{1-x}$ b) Increasing in the interval $(0, \infty)$ d) Strictly decreasing in the interval $(1, \infty)$			
5.	If $\frac{a_0}{n+1} + \frac{a_1}{n} + \frac{a_2}{n-1} + \dots + a_n$ has in (0, 1) a) At least one zero	2	e function $f(x) = a_0 x^n + c$) Only 3 zeros			
6.	A particle is moving along the curve $x = at^2 + bt + c$. If $ac = h^2$, then the particle would be moving with uniform					
	a) Rotation	b) Velocity	c) Acceleration	d) Retardation		

7.	The approximate value of $(33)^{1/5}$ is						
	a) 2.0125	b) 2.1	c) 2.01	d) None of these			
8.	At an instant the diagonal of a square is increasing at the rate of 0.2cm/sec and the area is increasing at the rate of 6 cm ² /sec. At that moment its side is						
	a) $\frac{30}{\sqrt{2}}$ cm	b) $30\sqrt{2}$ cm	c) 30 cm	d) 15 cm			
9.	A missile is fired from the ground level rises <i>x</i> metres vertically upwards in <i>t</i> seconds where $x = 100t - \frac{25}{2}t^2$. The maximum height reached is						
	a) 200 m	b) 125 m	c) 160 m	d) 190 m			
10.	The intercepts made by the tangent to the curve $y = \int_0^x t dt$, which is parallel to the line $y = 2x$, on <i>y</i> -axis are equal to						
	a) 1, — 1	b) —2, 2	c) 3	d) ⁻³			
11.	The function $f(x) = \tan x - x$ a) Always increases b) Always decreases c) Never decreases d) Some times increases and some times decreases						
12.	The maximum value c a) 8	of xy subject to $x + y = 8$ b) 16	8, is c) 20	d)24			
13.	The tangent to the cur a) (3, 9)	rve $y = \frac{2x^2}{-x} - x + 1$ is part b) (2, -1)	rallel to the line $y = 3x + c$) (2, 1)	- 9 at the point d) (1, 2)			
14.	4x - 3y + 2 = 0 is given by	he point <i>P</i> of the curve $y^2 = 2x^3$ such that the tangent at <i>P</i> is perpendicular to the line $x - 3y + 2 = 0$ is given by					
	a) (2, 4)	b) (1, $\sqrt{2}$)	c) (1/2, -1/2)	d) ^(1/8, -1/16)			
15.	If the parametric equation of a curve given by $x = e^t \cot y = e^t \sin t$, then the tangent to the curve at the point $t = \pi/4$ makes with axis of x the angle						
	a) 0	b)π/4	c) π/3	d) $^{\pi/2}$			
16.	All points on the curve $y^2 = 4a(x + a \sin \frac{x}{a})$ at which the tangents are parallel to the axis of x lie on a						
	a) Circle	b) Parabola	c) Line	d)None of these			
17.	The point of inflexion a) (1, 1)	for the curve $y = x^{5/2}$ is b) (0, 0)	c) (1, 0)	d) (0, 1)			

- 18. The minimum value of 2x + 3y, when xy = 6, isa) 12b) 9c) 8d) 6
- ^{19.} If $(x) = x^2 2x + 4$ on [1, 5], then the value of a constant *c* such that $\frac{f(5) f(1)}{5 1} = f'(c)$, is a) 0 b) 1 c) 2 d) 3
- 20. Let *a*,*b* be two distinct roots of a polynomial *f*(*x*). Then there exists at least one root lying between *a* and *b* of the polynomial
 a) *f*(*x*)
 b) *f*'(*x*)
 c) *f*"(*x*)
 d) None of these

