Class : XIth
Date :

Topic :-Applications of Derivatives

1

2
(a)

Let $y=x^{3}-12 x \quad \Rightarrow \frac{d y}{d x}=3 x^{2}-12$
Put $\frac{d y}{d x}=0, \quad 3 x^{2}-12=0$
$\Rightarrow \quad x= \pm 2$
At $x=2, \quad y=2^{3}-12(2)=-16$
At $x=-2, \quad y=(-2)^{3}-12(-2)=16$
Hence, option (a) is correct
(c)

We have,
$x y=a^{2}$ and $S=b^{2} x+c^{2} y$
$\Rightarrow S=b^{2} x+\frac{c^{2} a^{2}}{x}$
$\Rightarrow \frac{d S}{d x}=b^{2}-\frac{c^{2} a^{2}}{x^{2}}$ and $\frac{d^{3} s}{d x^{2}}=\frac{2 c^{2} a^{2}}{x^{3}}$
For local maximum or minimum, we must have
$\frac{d S}{x}=0 \Rightarrow b^{2}-\frac{c^{2} a^{2}}{x^{2}}=0 \Rightarrow x^{2}=\frac{c^{2} a^{2}}{b^{2}} \Rightarrow x= \pm \frac{c a}{b}$
Clearly, $\frac{d^{2} s}{d x^{2}}>0$ for $x=\frac{c a}{b}$
So, $x=\frac{c a}{b}$ is the point of local minimum
Local minimum value of $S=b^{2}\left(\frac{c a}{b}\right)+c^{2}\left(\frac{a^{2} b}{c a}\right)=2 a b c$

3
(b)

We have,
$g(x)=f(x)+f(1-x)$
$\therefore g^{\prime}(x)=f^{\prime}(x)-f^{\prime}(1-x)$ for all $x \in[0,1]$

Now, $f^{\prime \prime}(x)<0$ for $0 \leq x \leq 1$
$\Rightarrow f^{\prime}(x)$ is a decreasing function on $[0,1]$
$\Rightarrow f^{\prime}(x)>f^{\prime}(1-x)$ if $x<1-x$
and,
$f^{\prime}(x)<f^{\prime}(1-x)$ if $x>1-x$
$\Rightarrow f^{\prime}(x)-f^{\prime}(1-x)>0$ if $x<\frac{1}{2}$
and,
$f^{\prime}(x)-f^{\prime}(1-x)<0$ if $x>\frac{1}{2}$
$\Rightarrow g^{\prime}(x)>0$ if $x \in(0,1 / 2)$
and,
$\Rightarrow g^{\prime}(x)<0$ if $x \in(1 / 2,1)$
$\Rightarrow g(x)$ decreases on $\left[\frac{1}{2,1}\right]$ and increases on $\left[\frac{0,1}{2}\right]$

4 (d)
Since, $f(x)=x e^{1-x}$
$f^{\prime}(x)=-x e^{1-x}+e^{1-x}$
$=e^{1-x}(1-x)$
$\Rightarrow f^{\prime}(x)<0, \quad \forall(1, \infty)$
(a)

Consider the function
$\phi(x)=a_{0} \frac{x^{n+1}}{n+1}+a_{1} \frac{x^{n}}{n}+a_{2} \frac{x^{n-1}}{n-1}+\ldots+a_{n-1} \frac{x^{2}}{2}+a_{n} x$
Since $\phi(x)$ is a polynomial. Therefore, it is continuous on $[0,1]$ and differentiable on $(0,1)$ Also, $\phi(0)=0$
and, $\phi(1)=\frac{a_{0}}{n+1}+\frac{a_{1}}{n}+\frac{a_{2}}{n-2}+\ldots+a_{n}=0$ [Given]
$\therefore \phi(0)=\phi(1)$
Thus, $\phi(x)$ satisfies conditions of Rolle's theorem on $[0,1]$
Consequently, there exist $c \in(0,1)$ such that $\phi^{\prime}(c)=0$ i.e. $c \in(0,1)$ is a zero of $\phi^{\prime}(x)=a_{0}$ $x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=f(x)$
(c)

Given, $x=a t^{2}+b t+c$
$\Rightarrow($ speed $) \frac{d x}{d t}=2 a t+b$
\Rightarrow (acceleration) $\frac{d^{2} x}{d t^{2}}=2 a$
\therefore The particle will moving with
Uniform acceleration.
(a)

On differentiating given equation w. r.t. x, we get
$\frac{d x}{d t}=100-\frac{25}{2} .(2 \mathrm{t})=100-25 \mathrm{t}$
At maximum height, velocity $\frac{d x}{d t}=0$

$$
\therefore \quad 100-25 t=0 \Rightarrow t=4
$$

$$
\therefore \quad x=100 \times 4-\frac{25 \times 16}{2}=200 \mathrm{~m}
$$

10
 (b)

We have,
$y=\int_{0}^{x}|t| d t$
$\Rightarrow \frac{d y}{d x}=|x|$
Let $P\left(x_{1}, y_{1}\right)$ be a point on the curve (i) such that the tangent at P is parallel to the line

$$
y=2 x
$$

\therefore (Slope of the tangent at P) $=2$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=2 \Rightarrow\left|x_{1}\right|=2 \Rightarrow x_{1}= \pm 2$
Now, $y=\int_{0}^{x}|t| d t$
$y=\left\{\begin{array}{l}\int_{0}^{x} t d t=\frac{x^{2}}{2}, \quad \text { if } x \geq 0 \\ -\int_{0}^{x} t d t=-\frac{x^{2}}{2}, \text { if } x<0\end{array}\right.$
$\therefore x_{1}=2 \Rightarrow y_{1}=2$ and $x_{1}=-2 \Rightarrow y_{1}=-2$
Thus, the two points on the curve are $(2,2)$ and $(-2,-2)$
The equations of the tangents at these two points are
$y-2=2(x-2)$ and $y+2=2(x+2)$ respectively
Or, $2 x-y-2=0$ and $2 x-y+2=0$ respectively
These tangents cut off intercepts -2 and 2 respectively on y-axis

11 (a)
We have,
$f^{\prime}(x)=\sec ^{2} x-1 \geq 0$ for all $x[\because|\sec x| \geq 1$ for all $x]$
Hence, $f(x)$ always increases
(b)

Let $P=x y$. Then,
$P=x(8-x) \quad[\because x+y=8$ (given) $]$
$\Rightarrow P=8 x-x^{2} \Rightarrow \frac{d P}{d x}=8-2 x$ and $\frac{d^{2} P}{d x^{2}}=-2$
For maximum and minimum, we must have
$\frac{d P}{d x}=0 \Rightarrow 8-2 x=0 \Rightarrow x=4$
Clearly, $\frac{d^{2} P}{d x^{2}}=-1<0$ for all x
Hence, P is maximum when $x=y=4$. The maximum value of P is given by $P=4 \times 4=16$
(d)

Given curve is $y=2 x^{2}-x+1$
$\Rightarrow \frac{d y}{d x}=4 x-1$
Since, tangent to the curve is parallel to the given line $y=3 x+9$. Then, slopes will be equal $\therefore \quad 4 x-1=3$
$\Rightarrow \quad x=1$
From Eq. (i), $y=2(1)^{2}-1+1=2$
Hence, required point is $(1,2)$

(d)

Let $P\left(x_{1}, y_{1}\right)$ be a point on $y^{2}=2 x^{3}$ such that the tangent at P is perpendicular to the line

$$
\begin{equation*}
4 x-3 y+2=0 \tag{i}
\end{equation*}
$$

$\therefore\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)} \times\left(\frac{-4}{-3}\right)=-1 \Rightarrow\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=\frac{3}{4}$
Now,
$y^{2}=3 x^{3}$
$\Rightarrow 2 y \frac{d y}{d x}=6 x^{2} \Rightarrow\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=\frac{3 x_{1}^{2}}{y_{1}}$
From (i) and (ii), we get

$$
\begin{equation*}
\frac{3 x_{1}^{2}}{y_{1}}=\frac{3}{4} \Rightarrow y_{1}=4 x_{1}^{2} \tag{iii}
\end{equation*}
$$

Since (x_{1}, y_{1}) lies on $y^{2}=2 x^{3}$
$\therefore y_{1}^{2}=2 x_{1}^{3}$
Solving (iii) and (iv), we get
$\left(4 x_{1}\right)^{2}=2 x_{1}^{3} \Rightarrow x_{1}=0, x_{1}=1 / 8$
Putting the values of x_{1} in (iv), we get
$y_{1}=0, y_{1}= \pm \frac{1}{16}$
Hence, the required points are $(0,0),(1 / 8,1 / 16),(1 / 8,-1 / 16)$

15 (d)
We have,
$x=e^{t} \cos t$ and $y=e^{t} \sin t$
$\Rightarrow \frac{d x}{d t}=e^{t}(\cos t-\sin t)$ and $\frac{d y}{d t}=e^{t}(\sin t+\cos t)$
$\therefore \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\sin t+\cos t}{\cos t-\sin t} \Rightarrow\left(\frac{d y}{d x}\right)_{t=\pi / 4}=\infty$
So, tangent at $t=\frac{\pi}{4}$ subtends a right angle with x-axis
(b)

We have,
$y^{2}=4 a\left(x+a \sin \frac{x}{a}\right)$
$\Rightarrow 2 y \frac{d y}{d x}=4 a\left(1+\cos \frac{x}{a}\right)$
For points at which the tangents are parallel to x-axis, we must have
$\frac{d y}{d x}=0$
$\Rightarrow 4 a\left(1+\cos \frac{x}{a}\right)=0 \Rightarrow \cos \frac{x}{a}=-1 \Rightarrow \frac{x}{a}=(2 n+1) \pi$
For these values of x, we have $\sin \frac{x}{a}=0$
Putting $\sin \frac{x}{a}=0$ in (i), we get $y^{2}=4 a x$
Therefore, all these points lie on the parabola $y^{2}=4 a x$

17 (b)
Given $y=x^{5 / 2}$
$\therefore \frac{d y}{d x}=\frac{5}{2} x^{3 / 2}, \frac{d^{2} y}{d x^{2}}=\frac{15}{4} x^{1 / 2}$
At $x=0, \frac{d y}{d x}=0, \frac{d^{2} y}{d x^{2}}=0$
and $\frac{d^{3} y}{d x^{3}}$ is not defined
When $x=0, y=0$
$\therefore(0,0)$ is a point of inflexion

Let $f(x)=2 x+3 y$ and $x y=6$
$\Rightarrow f(x)=2 x+\frac{18}{x}$
On differentiating w.r.t. x, we get
$f^{\prime}(x)=2-\frac{18}{x^{2}}$
Put $f^{\prime}(x)=0$ for maxima or minima
$\Rightarrow 0=2-\frac{18}{x^{2}} \Rightarrow x= \pm 3$
and $f^{\prime \prime}(x)=\frac{36}{x^{3}}$
$\Rightarrow f^{\prime \prime}(3)=\frac{36}{3^{3}}>0$
\therefore At $x=3, f(x)$ is minimum
The minimum value of $f(x)$ is
$f(3)=2(3)+3(2)=12$
(b)

Given, $f(x)=x^{2}-2 x+4$ $f^{\prime}(x)=2 x-2$
By applying Mean value theorem
$f^{\prime}(c)=2 c-2=0$
$\Rightarrow c=1$
(b)

By the algebraic meaning of Rolle's theorem between any two roots of a polynomial there is always a root of its derivative

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	C	B	D	A	C	A	A	A	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	B	D	D	D	B	B	A	B	B			

