

Class: XIth
Date:
Subject: Maths
DPP No.:3

Topic :-Application of Derivatives

1.	The set $\{x^3 - 12x : -3 \le x \le 3\}$ is equal to				
	a) $\{x: -16 \le x \le 16\}$ b) $\{x: -12 \le x \le 12\}$ c) $\{x: -9 \le x \le 9\}$ d) $\{x: 0 \le x \le 10\}$				
2.	If $xy = a^2$ and $S = b^2x + c^2y$ where a , b and c are constants, then the minimum value of S is				
	a) abc b) $\sqrt{a} bc$ c) $2abc$				
3.	Let $g(x) = f(x) + f'(1-x)$ and $f''(x) < 0.0 \le x \le 1$. Then				
4.	a) $g(x)$ increases on $[1/2,1]$ and decreases on $[0,1/2]$ b) $g(x)$ decreases on $[0,1]$ c) $g(x)$ increases on $[0,1]$ d) $g(x)$ increases on $[0,1/2]$ and decreases on $[1/2,1]$ Select the correct statement from (a), (b), (c), (d) The function $f(x) = xe^{1-x}$				
	a) Strictly increasing in the interval $(\frac{1}{2}, 2)$ b) Increasing in the interval $(0, \infty)$				
	c) Decreases in the interval $(0, 2)$ d) Strictly decreasing in the interval $(1, \infty)$				
5.	If $\frac{a_0}{n+1} + \frac{a_1}{n} + \frac{a_2}{n-1} + \dots + \frac{a_{n-1}}{2} + a_n = 0$. Then the function $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots$ a_n has in $(0, 1)$				
	a) At least one zero b) At most one zero c) Only 3 zeros d) Only 2 zeros				
6.	A particle is moving along the curve $x = at^2 + bt + c$. If $ac = h^2$, then the particle would be				

moving with uniform

a) Rotation

c) Acceleration

b) Velocity

d) Retardation

7.	The approximate value of $(33)^{1/5}$ is					
	a) 2.0125	b) 2.1	c) 2.01	d) None of these		
8.	At an instant the diagonal of a square is increasing at the rate of 0.2cm/sec and the area is increasing at the rate of 6cm ² /sec. At that moment its side is					
	a) $\frac{30}{\sqrt{2}}$ cm	b) $30\sqrt{2}$ cm	c) 30 cm	d) 15 cm		
9.	A missile is fired from the ground level rises x metres vertically upwards in t seconds who $x = 100t - \frac{25}{2}t^2$. The maximum height reached is					
	a) 200 m	b) 125 m	c) 160 m	d) 190 m		
10.	The intercepts made by the tangent to the curve $y = \int_0^x t dt$, which is parallel to the line					
	y = 2x, on y-axis are equal to					
	a) 1, — 1	b) -2, 2	c) 3	d) ⁻³		
11.	The function $f(x) = \tan x - x$					
	a) Always increasesb) Always decreasesc) Never decreasesd) Some times increase	es an <mark>d som</mark> e times decre	ases			
12.	The maximum value of xy subject to $x + y = 8$, is					
	a) 8	b) 16	c) 20	d) 24		
13.	The tangent to the curve $y = 2x^2 - x + 1$ is parallel to the line $y = 3x + 9$ at the point					
	a) (3, 9)	b)(2,-1)	c) (2, 1)	d)(1,2)		
14.	4x - 3y + 2 = 0 is given by					
	a) (2, 4)	b) $(1, \sqrt{2})$	c) $(1/2, -1/2)$	d) $(1/8, -1/16)$		
15.	If the parametric equation of a curve given by $x = e^t \cos t$, then the tangent to the					
	curve at the point $t = \pi/4$ makes with axis of x the angle					
	a) 0	b) $\pi/4$	c) π/3	$d)^{\pi/2}$		

16. All points on the curve $y^2 = 4a(x + a \sin \frac{x}{a})$ at which the tangents are parallel to the axis of x

lie on a

- a) Circle
- b) Parabola
- c) Line
- d) None of these

- 17. The point of inflexion for the curve $y = x^{5/2}$ is
 - a) (1, 1)
- b)(0,0)
- c)(1,0)
- d)(0,1)

- 18. The minimum value of 2x + 3y, when xy = 6, is
 - a) 12

b)9

c) 8

- d)6
- 19. If $(x) = x^2 2x + 4$ on [1, 5], then the value of a constant c such that $\frac{f(5) f(1)}{5 1} = f'(c)$, is
 - a) 0

b) 1

c) 2

- d)3
- 20. Let a,b be two distinct roots of a polynomial f(x). Then there exists at least one root lying between a and b of the polynomial
 - a) f(x)
- b) f'(x)
- c) f''(x)
- d) None of these