

Class : XIth Date :

Subject : Maths DPP No. :2

4x - 3y = 0

Topic :-Application of Derivatives

- 1. In the mean value theorem $\frac{f(b) f(a)}{b a} = f'(c)$, if $a = 0, b = \frac{1}{2}$ and f(x) = x(x 1)(x - 2), then value of c is a) $1 - \frac{\sqrt{15}}{6}$ b) $1 + \sqrt{15}$ c) $1 - \frac{\sqrt{21}}{6}$ d) $1 + \sqrt{21}$ 2. If $f(x) = \frac{1}{4x^2 + 2x + 1}$, then its maximum value is a) 4/3 b) 2/3 c) 1 d) 3/4
- 3. The diameter of a circle is increasing at the rate of 1cm/sec. When its radius is π , the rate of increase of its area is

a) π cm²/sec b) 2π cm²/sec c) π^2 cm²/sec d) $2\pi^2$ cm²/sec² 4. The minimum value of 2x + 3y, when xy = 6, is a) 9 b) 12 c) 8 d) 6

5. The equation of the normal to the curve $y^4 = ax^3$ at (a, a) is

a) x + 2y = 3a b) 3x - 4y + a = 0 c) 4x + 3y = 7a

6. The value of *c* in Rolle's theorem when

 $f(x) = 2x^3 - 5x^2 - 4x + 3, x \in [1/3,3]$, is

a) 2 b)
$$-1/3$$
 c) -2 d) $^{2/3}$

7. Suppose the cubic $x^3 - px + q$ has three distinct real roots where p > 0 and q > 0. Then,

which one of the following holds?

a) The cubic has maxima at both $\frac{p}{3}$ and $-\frac{p}{3}$ b) The cubic has minima at $\frac{p}{3}$ and maxima at $-\frac{p}{3}$ c) The cubic has minima at $-\frac{p}{3}$ and maxima at d) The cubic has minima at both $\frac{p}{3}$ and $-\frac{p}{3}$

8. The chord joining the points where x = p and x = q on the curve $y = ax^2 + bx + c$ is parallel to the tangent at the point on the curve whose abscissa is

a) $\frac{p+q}{2}$ b) $\frac{p-q}{2}$ c) $\frac{pq}{2}$ d)None of these

9. *n* is a positive integer. If the value of *c* prescribed in Rolle's theorem for the function

 $f(x) = 2x(x-3)^n$ on the interval [0, 3] is 3/4, then the value of *n* is

- a) 5 b) 2 c) 3 d) 4
- 10. The shortest distance between the line y x = 1 and the curve $x = y^2$ is

a)
$$\frac{3\sqrt{2}}{8}$$
 b) $\frac{2\sqrt{3}}{8}$ c) $\frac{3\sqrt{2}}{5}$ d) $\frac{\sqrt{3}}{4}$

11. If the distance s covered by a particle in time *t* is proportional to the cube root of its

velocity, then the acceleration is
a) A constant
b)
$$\propto s^3$$

c) $\propto \frac{1}{s^3}$
d) $\propto s^5$

- 12. The distance travelled *s*(in meteres) by a particle in *t* second is given by, $s = t^3 + 2t^2 + t$. The speed of the particle after 18 will be
 - a) 8 cm/s b) 6 cm/s c) 2 cm/s d)None of these
- 13. Using differentials, the approximate value of $(627)^{1/4}$ is
 - a) 5.002 b) 5.003 c) 5.005 d) ^{5.004}
- 14. The length of the subtangent at any point (x_1, y_1) on the curve $y = a^x$, (a > 0) is

a)
$$2 \log a$$
 b) $\frac{1}{\log a}$ c) $\log a$ d) $a^{2x_1} \log a$

15. Using differentials the approximate value of $\sqrt{401}$ is

a) 20.100	b)20.025	c) 20.030	d) ^{20.125}
-----------	----------	-----------	----------------------

16. A ladder 10 m long rests against a vertical wall with the lower end on the horizontal ground. The lower end of the ladder is pulled along the ground away from the wall at the rate of 3 cm/s. The height of the upper end while it is descending at the rate of 4cm/s, is

a) $4\sqrt{3}m$ b) $5\sqrt{3}m$ c) 6m d) 8m

20 1 25

17. A cubic f(x) vanishes at x = -2 and has relative minimum/maximum at x = -1 and $x = \frac{1}{3}$ such that $\int_{-1}^{1} f(x) dx = \frac{14}{3}$. Then, f(x) is

a) $x^3 + x^2 - x$ b) $x^3 + x^2 - x + 1$ c) $x^3 + x^2 - x + 2$ d) $x^3 + x^2 - x - 2$ 18. The different between the greatest and least values of the function $f(x) = \cos x \frac{1}{2}$ $\cos 2x - \frac{1}{3}\cos 3x$ is

a)
$$\frac{2}{3}$$
 b) $\frac{8}{7}$ c) $\frac{3}{8}$ d) $\frac{4}{4}$

19. The number of real roots of the equation $e^{x-1} + x - 2 = 0$

20. If $f(x) = \sin^6 x + \cos^6 x$, then which one of the following is false?

