Class: XIth
Subject : Maths
Date :
DPP No. :2

Topic :-Application of Derivatives

1. In the mean value theorem $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$, if $a=0, b=\frac{1}{2}$ and $f(x)=x(x-1)$ $(x-2)$, then value of c is
a) $1-\frac{\sqrt{15}}{6}$
b) $1+\sqrt{15}$
c) $1-\frac{\sqrt{21}}{6}$
d) $1+\sqrt{21}$
2. If $f(x)=\frac{1}{4 x^{2}+2 x+1}$, then its maximum value is
a) $4 / 3$
b) $2 / 3$
c) 1
d) $3 / 4$
3. The diameter of a circle is increasing at the rate of $1 \mathrm{~cm} / \mathrm{sec}$. When its radius is π, the rate of increase of its area is
a) $\pi \mathrm{cm}^{2} / \mathrm{sec}$
b) $2 \pi \mathrm{~cm}^{2} / \mathrm{sec}$
c) $\pi^{2} \mathrm{~cm}^{2} / \mathrm{sec}$
d) $2 \pi^{2} \mathrm{~cm}^{2} / \mathrm{sec}^{2}$
4. The minimum value of $2 x+3 y$, when $x y=6$, is
a) 9
b) 12
c) 8
d) 6
5. The equation of the normal to the curve $y^{4}=a x^{3}$ at (a, a) is
a) $x+2 y=3 a$
b) $3 x-4 y+a=0$
c) $4 x+3 y=7 a$
d) $4 x-3 y=0$
6. The value of c in Rolle's theorem when
$f(x)=2 x^{3}-5 x^{2}-4 x+3, x \in[1 / 3,3]$, is
a) 2
b) $-1 / 3$
c) -2
d) $2 / 3$
7. Suppose the cubic $x^{3}-p x+q$ has three distinct real roots where $p>0$ and $q>0$. Then, which one of the following holds?
a) The cubic has maxima at both $\frac{p}{3}$ and $-\frac{p}{3}$
b) ${ }^{\text {The cubic }}$ has minima at $\frac{p}{3}$ and maxima at
c) The cubic has minima at $-\frac{p}{3}$ and maxima at d) The cubic has minima at both $\frac{p}{3}$ and $-\frac{p}{3}$
8. The chord joining the points where $x=p$ and $x=q$ on the curve $y=a x^{2}+b x+c$ is parallel to the tangent at the point on the curve whose abscissa is
a) $\frac{p+q}{2}$
b) $\frac{p-q}{2}$
c) $\frac{p q}{2}$
d) None of these
9. n is a positive integer. If the value of c prescribed in Rolle's theorem for the function $f(x)=2 x(x-3)^{n}$ on the interval $[0,3]$ is $3 / 4$, then the value of n is
a) 5
b) 2
c) 3
d) 4
10. The shortest distance between the line $y-x=1$ and the curve $x=y^{2}$ is
а) $\frac{3 \sqrt{2}}{8}$
b) $\frac{2 \sqrt{3}}{8}$
c) $\frac{3 \sqrt{2}}{5}$
d) $\frac{\sqrt{3}}{4}$
11. If the distance s covered by a particle in time t is proportional to the cube root of its velocity, then the acceleration is
a) A constant
b) $\propto s^{3}$
c) $\propto \frac{1}{s^{3}}$
d) $\propto s^{5}$
12. The distance travelled s (in meteres) by a particle in t second is given by, $s=t^{3}+2 t^{2}+t$.The speed of the particle after 18 will be
a) $8 \mathrm{~cm} / \mathrm{s}$
b) $6 \mathrm{~cm} / \mathrm{s}$
c) $2 \mathrm{~cm} / \mathrm{s}$
d) None of these
13. Using differentials, the approximate value of $(627)^{1 / 4}$ is
a) 5.002
b) 5.003
c) 5.005
d) 5.004
14. The length of the subtangent at any point $\left(x_{1}, y_{1}\right)$ on the curve $y=a^{x},(a>0)$ is
a) $2 \log a$
b) $\frac{1}{\log a}$
c) $\log a$
d) $a^{2 x_{1}} \log a$
15. Using differentials the approximate value of $\sqrt{401}$ is
a) 20.100
b) 20.025
c) 20.030
d) 20.125
16. A ladder 10 m long rests against a vertical wall with the lower end on the horizontal ground. The lower end of the ladder is pulled along the ground away from the wall at the rate of 3 cm / s. The height of the upper end while it is descending at the rate of $4 \mathrm{~cm} / \mathrm{s}$, is
a) $4 \sqrt{3} \mathrm{~m}$
b) $5 \sqrt{3} \mathrm{~m}$
c) 6 m
d) 8 m
17. A cubic $f(x)$ vanishes at $x=-2$ and has relative minimum/maximum at $x=-1$ and $x=\frac{1}{3}$ such that $\int_{-1}^{1} f(x) d x=\frac{14}{3}$. Then, $f(x)$ is
a) $x^{3}+x^{2}-x$
b) $x^{3}+x^{2}-x+1$
c) $x^{3}+x^{2}-x+2$
d) $x^{3}+x^{2}-x-2$
18. The different between the greatest and least values of the function $f(x)=\cos x \frac{1}{2}$

$$
\cos 2 x-\frac{1}{3} \cos 3 x \text { is }
$$

a) $\frac{2}{3}$
b) $\frac{8}{7}$
c) $\frac{3}{8}$
9
19. The number of real roots of the equation $e^{x-1}+x-2=0$
a) 1
b) 2
c) 3
d) 4
20. If $f(x)=\sin ^{6} x+\cos ^{6} x$, then which one of the following is false?
a) $f(x) \leq 1$
b) $f(x) \leq 2$
c) $f(x)>\frac{1}{4}$
d) $f(x) \leq \frac{1}{8}$

