

Class: XIth
Date:
Subject: Maths
DPP No.:8

Topic :-Application of Derivatives

1.	•	e parabola $y^2 = 4ax$ in so its projection on x -axisb) Constant acceleration		ction on the <i>y</i> -axis has a d) Variable acceleration
2.	The points of extremum of the function $\phi(x) = \int_1^x e^{-t^2/2} (1-t^2) dt$, are			
	a) $x = 0, 1$	b) $x = 1, -1$	c) $x = 1/2$	d) x = -1/2
3.		ically upwards and the het ² . The stone reaches the b) 2.5s	neight x ft reached by the maximum height in c) 3s	e stone in t seconds is d) 1.5s
4.	If $ax^2 + bx + 4$ attains respectively	its m <mark>inimu</mark> m value —1 a	at $x = 1$, then the values	of a and b are
	a) 5, — 10	b) 5, — 5	c) 5, 5	d) 10, — 5
5.	The function $f(x) = \log(1+x) - \frac{2x}{2+x}$ is increasing on a) $(0, \infty)$ b) $(-\infty, 0)$ c) $(-\infty, \infty)$ d) None of these			
6.	Let $f(x) = e^x \sin x$, slope of the curve $y = f(x)$ is maximum at $x = a$, if 'a' equals			
	a) 0	b) $\pi/4$	c) π/2	d) None of these
7.	The slope of the tangent to the curve $y = \sqrt{9 - x^2}$ at the point where ordinate and absorted equal, is			
	a) 1	b) -1	c) 0	d) None of these
8.	If $0 < x < \frac{\pi}{2}$, then a) $\cos(\sin x) > \cos x$ b) $\cos(\sin x) < \cos x$ c) $\cos(\sin x) = \sin(\cos x)$ d) $\cos(\sin x) < \sin(\cos x)$	•		

In the mean value theorem f(b) - f(a) = (b - a)f'(c), if a = 4, b = 9 and $f(x) = \sqrt{x}$, then the 9. value of c is a) 8.00 b) 5.25 c) 4.00 d) 6.25 10. If the function $f(x) = (2a - 3)(x + 2\sin 3) + (a - 1)(\sin^4 x + \cos^4 x) + \log 2$ does not possess critical points, then a) $a \in (-\infty, 4/3) \cup (2, \infty)$ b) $a \in (4/3,2)$ c) $a \in (4/3, \infty)$ d) $a \in (2, \infty)$ 11. If $s = ae^t + be^{-t}$ is the equation of motion of a particle, then its acceleration is equal to b) 2s a) s c) 3s d)4s 12. The angle of intersection of the curves $y = x^2$ and $x = y^2$ is a) $\tan^{-1}\left(\frac{4}{2}\right)$ d) $\tan^{-1} \left(\frac{3}{4} \right)$ b) $tan^{-1}(1)$ 13. A spherical balloon is expanding. If the radius is increasing at the rate of 2 cm/min, the rate at which the volume increase (in cubic centimeters per minute) when the radius is 5 cm, is a) 10π b) 100π c) 200π d) 50π 14. If the radius of a circle be increasing at a uniform rate of 2cm/s. The area of increasing of area of circle, at the instant when the radius is 20 cm, is c) $80\pi cm^2/s$ a) $70\pi cm^2/s$ b) $70cm^{2}/s$ d) $80 \, cm^2/s$ 15. The abscissa of the points, where the tangent to curve $y = x^3 - 3x^2 - 9x + 5$ is parallel to $x - 3x^2 - 9x + 5$ is parallel to $x - 3x^2 - 9x + 5$ axis, are c) $x = 1 \ and \ -3$ a) x = 0 and 0 b) $x = 1 \ and - 1$ d) x = -1 and 3 16. If $f(x) = x^3 - 6x^2 + 9x + 3$ be a decreasing function, then x lies in a) $(-\infty, -1) \cap (3, \infty)$ b) (1, 3)d) None of these 17. If the curve $y = ax^3 + bx^2 + cx$ is inclined at 45° to x-axis at (0, 0) but touches x-axis at (1, 0), a) a = 1, b = -2, c = 1 b) a = 1, b = 1, c = -2 c) a = -2, b = 1, c = 1 d) a = -1, b = 2, c = 118. The value of *x* for which $1 + x \log_e (x + \sqrt{x^2 + 1}) \ge \sqrt{x^2 + 1}$ are a) x < 0b) $0 \le x \le 1$ c) $x \ge 0$ d) None of these

- 19. The function $f(x) = x^{-x}$, $(x \in R)$ attains a maximum, value at x which is
 - a) 2

b)3

- d)1
- 20. The value of c in (0, 2) satisfying the Mean value theorem for the function $f(x) = x(x-1)^2$ $x \in [0, 2]$ is equal to a) $\frac{3}{4}$

c) $\frac{1}{3}$

