Class : XIth
Subject: Maths
Date :
DPP No. :8

Topic :-Application of Derivatives

1. A particle moves on the parabola $y^{2}=4 a x$ in such a way that its projection on the y-axis has a constant velocity. Then its projection on x-axis moves with
a) Constant velocity
b) Constant
c) Variable velocity
d) Variable acceleration acceleration
2. The points of extremum of the function $\phi(x)=\int_{1}^{x} e^{-t^{2} / 2}\left(1-t^{2}\right) d t$, are
a) $x=0,1$
b) $x=1,-1$
c) $x=1 / 2$
d) $x=-1 / 2$
3. A stone is thrown vertically upwards and the height $x \mathrm{ft}$ reached by the stone in t seconds is given by $x=80 t-16 t^{2}$. The stone reaches the maximum height in
a) 2 s
b) 2.5 s
c) 3 s
d) 1.5 s
4. If $a x^{2}+b x+4$ attains its minimum value -1 at $x=1$, then the values of a and b are respectively
a) $5,-10$
b) $5,-5$
c) 5,5
d) $10,-5$
5. The function $f(x)=\log (1+x)-\frac{2 x}{2+x}$ is increasing on
a) $(0, \infty)$
b) $(-\infty, 0)$
c) $(-\infty, \infty)$
d) None of these
6. Let $f(x)=e^{x} \sin x$, slope of the curve $y=f(x)$ is maximum at $x=a$, if 'a' equals
a) 0
b) $\pi / 4$
c) $\pi / 2$
d) None of these
7. The slope of the tangent to the curve $y=\sqrt{9-x^{2}}$ at the point where ordinate and abscissa are equal, is
a) 1
b) -1
c) 0
d) None of these
8. If $0<x<\frac{\pi}{2}$, then
a) $\cos (\sin x)>\cos x$
b) $\cos (\sin x)<\cos x$
c) $\cos (\sin x)=\sin (\cos x)$
d) $\cos (\sin x)<\sin (\cos x)$
9. In the mean value theorem $f(b)-f(a)=(b-a) f^{\prime}(c)$, if $a=4, b=9$ and $f(x)=\sqrt{x}$, then the value of c is
a) 8.00
b) 5.25
c) 4.00
d) 6.25
10. If the function $f(x)=(2 a-3)(x+2 \sin 3)+(a-1)\left(\sin ^{4} x+\cos ^{4} x\right)+\log 2$ does not possess critical points, then
a) $a \in(-\infty, 4 / 3) \cup(2, \infty)$
b) $a \in(4 / 3,2)$
c) $a \in(4 / 3, \infty)$
d) $a \in(2, \infty)$
11. If $s=a e^{t}+b e^{-t}$ is the equation of motion of a particle, then its acceleration is equal to
a) s
b) 2 s
c) 3 s
d) 4 s
12. The angle of intersection of the curves $y=x^{2}$ and $x=y^{2}$ is
a) $\tan ^{-1}\left(\frac{4}{3}\right)$
b) $\tan ^{-1}(1)$
c) 90°
d) $\tan ^{-1}\left(\frac{3}{4}\right)$
13. A spherical balloon is expanding. If the radius is increasing at the rate of $2 \mathrm{~cm} / \mathrm{min}$, the rate at which the volume increase (in cubic centimeters per minute)when the radius is 5 cm , is
a) 10π
b) 100π
c) 200π
d) 50π
14. If the radius of a circle be increasing at a uniform rate of $2 \mathrm{~cm} / \mathrm{s}$. The area of increasing of area of circle , at the instant when the radius is 20 cm , is
a) $70 \pi \mathrm{~cm}^{2} / \mathrm{s}$
b) $70 \mathrm{~cm}^{2} / \mathrm{s}$
c) $80 \pi \mathrm{~cm}^{2} / \mathrm{s}$
d) $80 \mathrm{~cm}^{2} / \mathrm{s}$
15. The abscissa of the points, where the tangent to curve $y=x^{3}-3 x^{2}-9 x+5$ is parallel to $x-$ axis , are
a) $x=0$ and 0
b) $x=1$ and -1
c) $x=1$ and -3
d) $x=-1$ and 3
16. If $f(x)=x^{3}-6 x^{2}+9 x+3$ be a decreasing function, then x lies in
a) $(-\infty,-1) \cap(3, \infty)$
b) $(1,3)$
c) $(3, \infty)$
d) None of these
17. If the curve $y=a x^{3}+b x^{2}+c x$ is inclined at 45° to x-axis at $(0,0)$ but touches x-axis at $(1,0)$, then
a) $a=1, b=-2, c=1$
b) $a=1, b=1, c=-2$
c) $a=-2, b=1, c=1$
d) $a=-1, b=2, c=1$
18. The value of x for which
$1+x \log _{e}\left(x+\sqrt{x^{2}+1}\right) \geq \sqrt{x^{2}+1}$ are
a) $x \leq 0$
b) $0 \leq x \leq 1$
c) $x \geq 0$
d) None of these
19. The function $f(x)=x^{-x},(x \in R)$ attains a maximum, value at x which is
a) 2
b) 3
c) $\frac{1}{e}$
d) 1
20. The value of c in $(0,2)$ satisfying the Mean value theorem for the function $f(x)=x(x-1)^{2}$, $x \in[0,2]$ is equal to
a) $\frac{3}{4}$
b) $\frac{4}{3}$
c) $\frac{1}{3}$
d) $\frac{2}{3}$
