

Class : XIth Date : Subject : Maths DPP No. :7

Topic :-Application of Derivatives

- 1. A particle moves in a straight line so that $s = \sqrt{t}$, then its acceleration is proportional to a) (velocity)³ b) velocity c) (velocity)² d) (velocity)^{3/2}
- 2. If *PQ* and *PR* are the two sides of a triangle, then the angle between them which gives maximum area of the triangle, is a) π b) $\pi/3$ c) $\pi/4$ d) $\pi/2$
- 3. The function $f(x) = a\cos x + b\tan x + x$ has extreme values at x = 0 and $x = \frac{\pi}{6}$, then a) $a = -\frac{2}{3}, b = -1$ b) $a = \frac{2}{3}, b = -1$ c) $a = -\frac{2}{3}, b = 1$ d) $a = \frac{2}{3}, b = 1$

4. The distance between the origin and the normal to the curve $y = e^{2x} + x^2$ at x = 0 is a) 2 b) $\frac{2}{\sqrt{3}}$ c) $\frac{2}{\sqrt{5}}$ d) $\frac{1}{2}$

- 5. The function $f(x) = x e^{1-x}$ strictly a) Increases in the interval $(0, \infty)$ b) Decreases in the interval (0,2)
 - c) Increases in the interval (1/2, 2)
 - d) Decreases in the interval $(1,\infty)$
- 6. If *f* and *g* are two decreasing functions such that *gof* exists, then *gof*, is
 - a) An increasing function
 - b) A decreasing function
 - c) Neither increasing nor decreasing
 - d) None of these

7. The length of subnormal of parabola $y^2 = 4ax$ at any point is equal to

a)
$$\sqrt{2}a$$
 b) $2\sqrt{2}a$ c) $\frac{a}{\sqrt{2}}$ d) $2a$

8. If tangent to the curve $x = at^2$, y = 2at is perpandicular to *x*-axis, then its point of contact is a) (a, a) b) (0, a) c) (0, 0) d) (a, 0)

- 9. The abscissa of the point on the curve $ay^2 = x^3$, the normal at which cuts off equal intercepts from the coordinate axes is a) 2 a/9 b) 4 a/9 c) -4 a/9 d) -2 a/9
- 10. The point on the curve $y = 2x^2 6x 4$ at which the tangent is parallel to the *x*-axis, is a) $\begin{pmatrix} 3\\2\\, \frac{13}{2} \end{pmatrix}$ b) $\begin{pmatrix} -\frac{5}{2}, -\frac{17}{2} \end{pmatrix}$ c) $\begin{pmatrix} 3\\2\\, \frac{17}{2} \end{pmatrix}$ d) $\begin{pmatrix} 3\\2\\, -\frac{17}{2} \end{pmatrix}$
- 11. If the function $f(x) = x^3 6x^2 + ax + b$ satisfies Rolle's theorem in the interval [1, 3] and $f'\left(\frac{2\sqrt{3}+1}{\sqrt{3}}\right) = 0$, then a) a = -11 b) a = -6 c) a = 6 d) a = 11
- 12. Let $g(x) = \begin{cases} 2e & \text{if } x \le 1\\ \log(x-1), & \text{if } x > 1 \end{cases}$. The equation of the normal to y = g(x) at the point (3,log 2), is a) $y - 2x = 6 + \log 2$ b) $y + 2x = 6 + \log 2$ c) $y + 2x = 6 - \log 2$ d) $y + 2x = -6 + \log 2$
- 13. If *f* is an increasing function and *g* is a decreasing function on an interval *I* such that *f* og exists, then
 - a) *f og* is an increasing function on *I*
 - b) *f og* is a decreasing function on *I*
 - c) *f og* is neither increasing nor decreasing on *I*
 - d) None of these
- 14. *N* characters of information are held on magnetic tape, in batches of *x* characters each, the batch processing time is $\alpha + \beta x^2$ seconds, α and β are constants. The optical value of *x* for fast processing is,

a)
$$\alpha/\beta$$
 b) β/α c) $\sqrt{\alpha/\beta}$ d) $\sqrt{\beta/\alpha}$

- 15. The longest distance of the point (*a*, 0) from the curve $2x^2 + y^2 2x = 0$, is given by a) $\sqrt{1 - 2a + a^2}$ b) $\sqrt{1 + 2a + 2a^2}$ c) $\sqrt{1 + 2a - a^2}$ d) $\sqrt{1 - 2a + 2a^2}$
- 16. The coordinates of the point on the curve $y = x^2 3x + 2$ where the tangent is perpendicular to the straight line y = x are a) (0.2) b) (1.0) c) (-1.6) d) (2, -2)

17. The tangent and normal at the point $P(at^2, 2 at)$ to the parabola $y^2 = 4 ax$ meet the *x*-axis in *T* and *G* respectively, then the angle at which the tangent at *P* to the parabola is inclined to the tangent at *P* to the circle through *T*, *P*, *G* is a) $\tan^{-1}t^2$ b) $\cot^{-1}t^2$ c) $\tan^{-1}t$ d) $\cot^{-1}t$

- 18. The normal to the curve $x = a(\cos \theta + \theta \sin \theta)$, $y = a(\sin \theta \theta \cos \theta)$ at any point θ is such that a) It is at a constant distance from the origin b) It passes through $\left(\frac{a\pi}{2}, -a\right)$ c) It makes angle $\frac{\pi}{2} - \theta$ with the *x*-axis d) It passes through the origin
- 19. If $f(x) = xe^{x(1-x)}$, then f(x) is a) Increasing on $\begin{bmatrix} -\frac{1}{2}, 1 \end{bmatrix}$ b) Decreasing on R c) Increasing on R d) Decreasing on $\begin{bmatrix} -\frac{1}{2}, 1 \end{bmatrix}$
- 20. The function $f(x) = 2x^3 15x^2 + 36x + 4$ is maximum at a) x = 2 b) x = 4 c) x = 0 d) x = 3

