Class: XIth
Subject: Maths
Date :
DPP No. : 7

Topic:-Application of Derivatives

1. A particle moves in a straight line so thats $=\sqrt{t}$, then its acceleration is proportional to
a) $(\text { velocity })^{3}$
b) velocity
c) $(\text { velocity })^{2}$
d) $(\text { velocity })^{3 / 2}$
2. If $P Q$ and $P R$ are the two sides of a triangle, then the angle between them which gives maximum area of the triangle, is
a) π
b) $\pi / 3$
c) $\pi / 4$
d) $\pi / 2$
3. The function $f(x)=a \cos x+b \tan x+x$ has extreme values at $x=0$ and $x=\frac{\pi}{6}$, then
a) $a=-\frac{2}{3}, b=-1$
b) $a=\frac{2}{3}, b=-1$
c) $a=-\frac{2}{3}, b=1$
d) $a=\frac{2}{3}, b=1$
4. The distance between the origin and the normal to the curve $y=e^{2 x}+x^{2}$ at $x=0$ is
a) 2
b) $\frac{2}{\sqrt{3}}$
c) $\frac{2}{\sqrt{5}}$
d) $\frac{1}{2}$
5. The function $f(x)=x e^{1-x}$ strictly
a) Increases in the interval $(0, \infty)$
b) Decreases in the interval $(0,2)$
c) Increases in the interval $(1 / 2,2)$
d) Decreases in the interval $(1, \infty)$
6. If f and g are two decreasing functions such that $g o f$ exists, then $g o f$, is
a) An increasing function
b) A decreasing function
c) Neither increasing nor decreasing
d) None of these
7. The length of subnormal of parabola $y^{2}=4 a x$ at any point is equal to
a) $\sqrt{2} a$
b) $2 \sqrt{2} a$
c) $\frac{a}{\sqrt{2}}$
d) $2 a$
8. If tangent to the curve $x=a t^{2}, y=2 a t$ is perpandicular to x-axis, then its point of contact is
a) (a, a)
b) $(0, a)$
c) $(0,0)$
d) $(a, 0)$
9. The abscissa of the point on the curve $a y^{2}=x^{3}$, the normal at which cuts off equal intercepts from the coordinate axes is
a) $2 a / 9$
b) $4 a / 9$
c) $-4 a / 9$
d) $-2 a / 9$
10. The point on the curve $y=2 x^{2}-6 x-4$ at which the tangent is parallel to the x-axis, is
a) $\left(\frac{3}{2}, \frac{13}{2}\right)$
b) $\left(-\frac{5}{2},-\frac{17}{2}\right)$
c) $\left(\frac{3}{2}, \frac{17}{2}\right)$
d) $\left(\frac{3}{2},-\frac{17}{2}\right)$
11. If the function $f(x)=x^{3}-6 x^{2}+a x+b$ satisfies Rolle's theorem in the interval $[1,3]$ and $f^{\prime}\left(\frac{2 \sqrt{3}+1}{\sqrt{3}}\right)=0$, then
a) $a=-11$
b) $a=-6$
c) $a=6$
d) $a=11$
12. $\operatorname{Let} g(x)=\left\{\begin{array}{cl}2 e & \text { if } x \leq 1 \\ \log (x-1), & \text { if } x>1\end{array}\right.$. The equation of the normal to $\mathrm{y}=g(x)$ at the point $(3, \log 2)$, is
a) $y-2 x=6+\log 2$
b) $y+2 x=6+\log 2$
c) $y+2 x=6-\log 2$
d) $y+2 x=-6+\log 2$
13. If f is an increasing function and g is a decreasing function on an interval I such that $f o g$ exists, then
a) $f o g$ is an increasing function on I
b) $f o g$ is a decreasing function on I
c) $f o g$ is neither increasing nor decreasing on I
d) None of these
14. N characters of information are held on magnetic tape, in batches of x characters each, the batch processing time is $\alpha+\beta x^{2}$ seconds, α and β are constants. The optical value of x for fast processing is,
a) α / β
b) β / α
c) $\sqrt{\alpha / \beta}$
d) $\sqrt{\beta / \alpha}$
15. The longest distance of the point $(a, 0)$ from the curve $2 x^{2}+y^{2}-2 x=0$, is given by
a) $\sqrt{1-2 a+a^{2}}$
b) $\sqrt{1+2 a+2 a^{2}}$
c) $\sqrt{1+2 a-a^{2}}$
d) $\sqrt{1-2 a+2 a^{2}}$
16. The coordinates of the point on the curve $y=x^{2}-3 x+2$ where the tangent is perpendicular to the straight line $y=x$ are
a) (0.2)
b) (1.0)
c) $(-1,6)$
d) $(2,-2)$
17. The tangent and normal at the point $P\left(a t^{2}, 2 a t\right)$ to the parabola $y^{2}=4 a x$ meet the x-axis in T and G respectively, then the angle at which the tangent at P to the parabola is inclined to the tangent at P to the circle through T, P, G is
a) $\tan ^{-1} t^{2}$
b) $\cot ^{-1} t^{2}$
c) $\tan ^{-1} t$
d) $\cot ^{-1} t$
18. The normal to the curve $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$ at any point θ is such that
a) It is at a constant distance from the origin
b) It passes through $\left(\frac{a \pi}{2},-a\right)$
c) It makes angle $\frac{\pi}{2}-\theta$ with the x-axis
d) It passes through the origin
19. If $f(x)=x e^{x(1-x)}$, then $f(x)$ is
Increasing on
a) $\left[-\frac{1}{2}, 1\right]$
b) Decreasing on R
c) Increasing on R
Decreasing on
d) $\left[-\frac{1}{2}, 1\right]$
20. The function $f(x)=2 x^{3}-15 x^{2}+36 x+4$ is maximum at
a) $x=2$
b) $x=4$
c) $x=0$
d) $x=3$

