Class : XIth
Subject : Maths
Date :
DPP No. :10

Topic :-Application of Derivatives

1. If $x=t^{2}$ and $y=2 t$, then equation of the normal at $t=1$, is
a) $x+y-3=0$
b) $x+y-1=0$
c) $x+y+1=0$
d) $x+y+3=0$
2. The side of an equilateral triangle is ' a ' units and is increasing at the rate of λ units $/ \mathrm{sec}$. The rate of increase of its area is
a) $\frac{2}{\sqrt{3}} \lambda a$
b) $\sqrt{3} \lambda a$
c) $\frac{\sqrt{3}}{2} \lambda a$
d) None of these
3. If a and b are positive numbers such that $a>b$, then the minimum value of a sec $\theta-b \tan \theta$ $\left(0<\theta<\frac{\pi}{2}\right)$ is
a) $\frac{1}{\sqrt{a^{2}-b^{2}}}$
b) $\frac{1}{\sqrt{a^{2}+b^{2}}}$
c) $\sqrt{a^{2}+b^{2}}$
d) $\sqrt{a^{2}-b^{2}}$
4. If $y=x^{n}$, then the ratio of relative errors in y and x is
a) $1: 1$
b) $2: 1$
c) $1: n$
d) $n: 1$
5. How many real solutions does the equation $x^{7}+14 x^{5}+16 x^{3}+30 x-560=0$ have?
a) 5
b) 7
c) 1
d) 3
6. The function $f(x)=x^{3}+a x^{2}+b x+c, a^{2} \leq 3 b$ has
a) One maximum value
b) One minimum value
c) No extreme value
d) One maximum and one minimum value
7. The fixed point P on the curve $y=x^{2}-4 x+5$ such that the tangent at P is perpendicular to the line $x+2 y-7=0$ is given by
a) $(3,2)$
b) $(1,2)$
c) $(2,1)$
d) None of these
8. If the area of the triangle, included between the axes and any tangent to the curve $x y^{n}=a^{n+1}$ is constant, then the value of n is
a) -1
b) -2
c) 1
d) 2
9. The radius of a circular plate is increasing at the rate of $0.01 \mathrm{~cm} / \mathrm{s}$ when the radius is 12 cm . Then , The rate at which the area increase, is
a) $0.24 \pi \mathrm{sq} \mathrm{cm} / \mathrm{s}$
b) $60 \pi \mathrm{sq} \mathrm{cm} / \mathrm{s}$
c) $24 \pi \mathrm{sq} \mathrm{cm} / \mathrm{s}$
d) $1.2 \pi \mathrm{sq} \mathrm{cm} / \mathrm{s}$
10. If $g(x)=\min \left(x, x^{2}\right)$ where x is real number, then
a) $g(x)$ is an increasing function
b) $g(x)$ is a decreasing function
c) $g(x)$ is a constant function
d) $g(x)$ is a continuous function except at $x=0$
11. The angle between the curves $y=a^{x}$ and $y=b^{x}$ is equal to
a) $\tan ^{-1}\left(\left|\frac{a-b}{1+a b}\right|\right)$
b) $\tan ^{-1}\left(\left|\frac{a+b}{1-a b}\right|\right)$
c) $\tan ^{-1}\left(\left|\frac{\log b+\log a}{1+\log a \log b}\right|\right)$
d) $\tan ^{-1}\left(\left|\frac{\log a-\log b}{1+\log a \log b}\right|\right)$
12. The function which is neither decreasing nor increasing in $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$, is
a) $\operatorname{cosec} x$
b) $\tan x$
c) x^{2}
d) $|x-1|$
13. On the interval $[0,1]$ the function $x^{25}(1-x)^{75}$ takes its maximum value at the point
a) 0
b) $\frac{1}{4}$
c) $\frac{1}{2}$
d) $\frac{1}{3}$
14. A function f is defined by $f(x)=e^{x} \sin x$ in $[0, \pi]$. Which of the following is not correct?
a) f is continous in $[0, \pi]$
b) f is differentiable in $[0, \pi]$
c) $f(0)=f(\pi)$
d) Rolle's theorem is not true in $[0, \pi]$
15. If $x y=c^{2}$, then minimum value of $a x+b y$ is
a) $c \sqrt{a b}$
b) $2 c \sqrt{a b}$
c) $-c \sqrt{a b}$
d) $-2 c \sqrt{a b}$
16. If $x-2 y=4$, the minimum value of $x y$ is
a) -2
b) 0
c) 0
d) -3
17. The function $f(x)=\left(9-x^{2}\right)^{2}$ increasing in
a) $(-3,0) \cup(3, \infty)$
b) $(-\infty,-3) \cup(3, \infty)$
c) $(-\infty,-3) \cup(0,3)$
d) $(-3,3)$
18. The real number x when added to its inverse gives the minimum value of the sum at x equals to
a) 2
b) 1
c) -1
d) -2
19. The points on the curve $12 y=x^{3}$ whose ordinate and abscissa change at the same rate, are
a) $(-2,-2 / 3),(2,2 / 3) b)(-2 / 3,-2),(2 / 3,2$ c. $)(-2,-2 / 3)$ only
d) $(2 / 3,2)$ only
20. Let $P(2,2)$ and $Q(1 / 2,-1)$ be two points on the parabola $y^{2}=2 x$. The coordinates of the point R on the parabola $y^{2}=2 x$, where the tangent to the curve is parallel to the chord $P Q$, are
a) $(2,-1)$
b) $(1 / 8,1 / 2)$
c) $(\sqrt{2}, 1)$
d) $(-\sqrt{2}, 1)$

