Class: XIth
Subject: Maths
Date:
DPP No. :1

Topic :-Application of Derivatives

1. The maximum value of the function $f(x)$ given by $f(x)=x(x-1)^{2}, 0<x<2$, is
a) 0
b) $4 / 27$
c) -4
d) $1 / 4$
2. For a given integer k, in the interval $\left[2 \pi k+\frac{\pi}{2}, 2 \pi k-\frac{\pi}{2}\right]$ the graph of $\sin x$ is
a) Increasing from -1 to 1
b) Decreasing from -1 to 0
c) Decreasing from 0 to 1
d) None of the above
3. If θ is the semi vertical angle of a cone of maximum volume and given slant height, then $\tan \theta$ is given by
a) 2
b) 1
c) $\sqrt{2}$
d) $\sqrt{3}$
4. The value of b for which the function $f(x)=\sin x-b x+c$ is decreasing in the interval $(-\infty, \infty)$ is given by
a) $b<1$
b) $b \geq 1$
c) $b>1$
d) $b \leq 1$
5. The function $f(x)=2 x^{3}+3 x^{2}-12 x+1$ decreases in the interval
a) $(2,3)$
b) $(1,2)$
c) $(-2,1)$
d) $(-3,-2)$
6. If $f(x)=2 x+\cot ^{-1} x+\log \left(\sqrt{1+x^{2}}-x\right)$, then $f(x)$
a) Increases on R
b) Decreases in [0, ∞)
c) Neither increases nor decreases in ($0, \infty$)
d) None of these
7. The maximum value of $f(x)=3 \cos ^{2} x+4 \sin ^{2} x+\cos \frac{x}{2}+\sin \frac{x}{2}$, is
a) 4
b) $3+\sqrt{2}$
c) $4+\sqrt{2}$
d) $2+\sqrt{2}$
8. If $a^{2} x^{4}+b^{2} y^{4}=c^{6}$, then maximum value of $x y$ is
a) $\frac{c^{2}}{\sqrt{a b}}$
b) $\frac{c^{3}}{a b}$
c) $\frac{c^{3}}{\sqrt{2 a b}}$
d) $\frac{c^{3}}{2 a b}$
9. A stone is dropped into a quiet lake. If the waves moves in circles at the rate of $30 \mathrm{~cm} / \mathrm{sec}$ when the radius is 50 m , the rate of increase of enclosed area is
a) $30 \pi \mathrm{~m}^{2} / \mathrm{sec}$
b) $30 \mathrm{~m}^{2} / \mathrm{sec}$
c) $3 \pi \mathrm{~m}^{2} / \mathrm{sec}$
d) None of these
10. The equation of the tangent to the curve $x=t \cos t, y=t \sin t$ at the origin is
a) $x=0$
b) $y=0$
c) $x+y=0$
d) $x-y=0$
11. The rate of change of the surface area of a sphere of a sphere of radius r, when the radius is increasing at the rate of $2 \mathrm{~cm} /$ sis proportional to
a) $\frac{1}{r}$
b) $\frac{1}{r^{2}}$
c) r
d) r^{2}
12. The maximum value of $(1 / x)^{x}$, is
a) e
b) e^{e}
c) $e^{1 / e}$
d) $(1 / e)^{1 / e}$
13. If $f(x)=2 x^{3}-21 x^{2}+36 x-30$, then which one of the following is correct
a) $f(x)$ has minimum at $x=1$
b) $f(x)$ has maximum at $x=6$
c) $f(x)$ has maximum at $x=1$
d) $f(x)$ has maxima or minima
14. An edge of a variable cube is increasing at the rate of $10 \mathrm{~cm} / \mathrm{s}$. How fast the volume of the cube will increase when the edge is 5 cm long?
a) $750 \mathrm{~cm}^{3} / \mathrm{s}$
b) $75 \mathrm{~cm}^{3} / \mathrm{s}$
c) $300 \mathrm{~cm}^{3} / \mathrm{s}$
d) $150 \mathrm{~cm}^{3} / \mathrm{s}$
15. The tangents to the curve $x=a(\theta-\sin \theta), y=a(1+\cos \theta)$ at the points $\theta=(2 k+1)$ $\pi, k \in Z$ are parallel to:
a) $y=x$
b) $y=-x$
c) $y=0$
d) $x=0$
16. The normal to the curve $5 x^{5}-10 x^{3}+x+2 y+6=0$ at $P(0,-3)$ meets the curve again at the point
a) $(-1,1),(1,5)$
b) $(1,-1),(-1,-5) \mathrm{c})(-1,-5),(-1,1) \mathrm{d})(-1,5),(1,-1)$
17. The normal to the curve represented parametrically by $x=a(\cos \theta+\theta \sin \theta)$ and $y=a(\sin \theta$ $-\theta \cos \theta)$ at any point θ, is such that it
a) Makes a constant angle with x-axis
b) Is at a constant distance from the origin
c) Passes through the origin
d) Satisfies all the three conditions
18. If $f(x)=\left\{\begin{array}{c}3 x^{2}+12 x-1,-1 \leq x \leq 2 \\ 37-x, 2<x \leq 3\end{array}\right.$, then
a) $f(x)$ is increasing in $[-1,2]$
b) $f(x)$ is continuous in $[-1,3]$
c) $f(x)$ is maximum at $x=2$
d) All the above
19. The value of c, in the Lagrange's Mean value theorem $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$, for the function $f(x)$ $=x(x-1)(x-2)$ in the interval $[0,1 / 2]$, is
a) $\frac{1}{4}$
b) $1-\frac{\sqrt{21}}{6}$
c) $\frac{9}{8}$
d) $1+\frac{\sqrt{21}}{6}$
20. If $f(x)=k x-\sin x$ is monotonically increasing, then
a) $k>1$
b) $k>-1$
c) $k<1$
d) $k<-1$
