

Class: XIth
Date:
Subject: Maths
DPP No.:1

Topic :-Application of Derivatives

1.	The maximum value of the function $f(x)$ given by $f(x) = x(x-1)^2$, $0 < x < 2$, is					
	a) 0	b)4/27	c) -4	d)1/4		
2.	For a given integer k, in the interval $\left[2\pi k + \frac{\pi}{2}, 2\pi k - \frac{\pi}{2}\right]$ the graph of sin x is					
	a) Increasing from -1 to 1			b) Decreasing from -1 to 0		
	c) Decreasing from	0 to 1	d) None of the al	oove		
3.	If $ heta$ is the semi vertical angle of a cone of maximum volume and given slant height, then					
	an hetais given by					
	a) 2	b) 1	c) $\sqrt{2}$	d) $\sqrt{3}$		
4.	The value of b for which the function $f(x) = \sin x - bx + c$ is decreasing in the interval					
	$(-\infty,\infty)$ is given b	оу				
	a) <i>b</i> < 1	b) $b \ge 1$	c) $b > 1$	d) $b \le 1$		
5.	The function $f(x)$ =	$=2x^3+3x^2-12x+1$	lecreases in the inter	val		
		b)(1, 2)	c) (-2, 1)	d)(-3, -2)		
6.	If $f(x) = 2x + \cot^{-1} x + \log(\sqrt{1 + x^2} - x)$, then $f(x)$					
	a) Increases on R					
	b) Decreases in [0, ∞)					
	c) Neither increases nor decreases in $(0, \infty)$					
	d) None of these					
7.	The maximum value of $f(x) = 3\cos^2 x + 4\sin^2 x + \cos\frac{x}{2} + \sin\frac{x}{2}$, is					
	a) 4	b) $3 + \sqrt{2}$		d) 2 + $\sqrt{2}$		
8.	If $a^2x^4 + b^2y^4 = c^6$,	of xy is				
	c^2					
	a) $\frac{c^2}{\sqrt{ab}}$					
	$b)$ c^3					
	$\frac{ab}{ab}$					
	b) $\frac{c^3}{ab}$ c) $\frac{c^3}{\sqrt{2ab}}$					
	d) $\frac{c^3}{2ah}$					
	Lub					
9.	A stone is dropped into a quiet lake. If the waves moves in circles at the rate of 30cm/sec					
	when the radius is 50 m, the rate of increase of enclosed area is					

a) $30 \pi \text{ m}^2/\text{sec}$ b) $30 \text{ m}^2/\text{sec}$

c) 3π m²/sec

d) None of these

10.	The equation of the tangent to the curve $x = t\cos t$, $y = t\sin t$ at the origin is						
	a) x = 0	$\mathbf{b})y = 0$	c) x + y = 0	d)x - y = 0			
11.	The rate of change of the surface area of a sphere of a sphere of radius <i>r</i> , when the radius is						
	increasing at the rate of 2 cm/sis proportional to						
	a) $\frac{1}{r}$	b) $\frac{1}{r^2}$	c) <i>r</i>	$\mathrm{d})r^2$			
12.	The maximum value o	$f(1/x)^x$, is					
	a) <i>e</i>	b) <i>e</i> ^e	c) $e^{1/e}$	d) $(1/e)^{1/e}$			
13.	If $f(x) = 2x^3 - 21x^2 + 36x - 30$, then which one of the following is correct						
	a) $f(x)$ has minimum a	at x = 1	b) $f(x)$ has maximum $at x = 6$				
	c) $f(x)$ has maximum a	at $x = 1$	d) f(x) has maxima or minima				
14.	An edge of a variable cube is increasing at the rate of 10cm/s. How fast the volume of the						
	cube will increase who	en the edge is 5 cm long	g?				
	a) 750 cm $^{3}/_{s}$	b) 75 cm $^{3}/_{s}$	c) 300 cm $^{3}/_{s}$	d) 150 cm $^{3}/_{s}$			
15.			$= a(1 + \cos \theta)$ at the p				
	π , $k \in \mathbb{Z}$ are parallel to:						
	a) $y = x$		c) $y = 0$	d)x = 0			
16.		,,,	+6 = 0 at $P(0, -3)$ m				
	the point	Ž		Ü			
	<u> </u>	b) $(1, -1), (-1, -5)$	(-1, -5), (-1, 1)	(1) d) $(-1,5)$, $(1,-1)$			
17.	The normal to the curve represented parametrically by $x = a(\cos \theta + \theta \sin \theta)$ and $y = a(\sin \theta)$						
	$-\theta\cos\theta$) at any point		,	, , ,			
	a) Makes a constant ar						
	b) Is at a constant dista						
	c) Passes through the						
	d) Satisfies all the thre						
18.	If $f(x) = \begin{cases} 3x^2 + 12x - 37 - x \end{cases}$						
	$\text{If } f(x) = \{ 37 - x,$	$2 < x \le 3$, then					
	a) $f(x)$ is increasing in	[-1, 2]					
	b) $f(x)$ is continuous i	n [- 1, 3]					
	c) $f(x)$ is maximum at	x = 2					
	d) All the above						
19.	The value of c , in the L	value of c, in the Lagrange's Mean value theorem $\frac{f(b)-f(a)}{b-a}=f'(c)$, for the function f					
	= x(x-1)(x-2) in the interval [0, 1/2], is						
	a) $\frac{1}{4}$	b) $1 - \frac{\sqrt{21}}{6}$	c) $\frac{9}{8}$	d) _{1+$\frac{\sqrt{21}}{6}$}			
	4	$\frac{6}{6}$	8 8	$\frac{471 + \frac{1}{6}}{6}$			