CLASS : XITh
DATE :

Solutions

Topic :-WAVES

1

2

(a)

Here, $\frac{c t}{\lambda}$ is dimensionless and unit of $c t$ is same as that of x. Also unit of λ is same as that of A, which is also the unit of x
(a)
$\mathrm{Y}=2 \cos 2 \pi(330 t-x)$
$\omega=2 \pi \times 330$
$T=\frac{1}{330} s$
(c)

Resonance occurs when amplitude is maximumie, when the denominator of this equation is minimum.
(d)

Number of waves per minute $=54$
\therefore Number of waves per second $=54 / 60$
Now $v=n \lambda \Rightarrow n=\frac{54}{60} \times 10=9 \mathrm{~m} / \mathrm{s}$
(a)
$v_{\text {max }}=a \omega=3 \times 10=30$
6 (c)
Resultant amplitude
$A_{R}=2 A \cos \left(\frac{\theta}{2}\right)=2 \times(2 a) \cos \left(\frac{\theta}{2}\right)=4 a \cos \left(\frac{\theta}{2}\right)$
(b)

Let the base frequency be n for closed pipe then notes are $n, 3 n, 5 n \ldots$...
\therefore note $3 n=255 \Rightarrow n=85$, note $5 n=85 \times 5=425$ note $7 n=7 \times 85=595$
(b)
$y_{1}=10^{-6} \sin [100 t+(x / 50)+0.5]$
$y_{2}=10^{-6} \sin \left[100 t+\left(\frac{x}{50}\right)+\left(\frac{\pi}{2}\right)\right]$
Phase difference ϕ
$=[100 t+(x / 50)+1.57]-[100 t+(x / 50)+0.5]$
$=1.07$ radians
(d)

In n is frequency of first fork, then frequency of the last $(10$ th fork $)=n+4(10-1)=2 n$
$\therefore n=36$ and $2 n=72$
(a)

Phase difference is 2π means constrictive interference so resultant amplitude will be maximum
(a)

At nodes pressure change (strain) is maximum
(d)

According to Laplace, the speed of sound in gas is given by
$v=\sqrt{\frac{\gamma R T}{M}}$,
Where γ is ratio of specific heats, M the molecular
weight, R the gas constant and T the temperature,
$\therefore \frac{v_{o}}{v_{H}}=\sqrt{\frac{M_{H}}{M_{o}}}$
$\therefore \frac{v_{O}}{v_{H}}=\sqrt{\frac{1}{16}}=\frac{1}{4}$
$\therefore \quad v_{O}: v_{H}=1: 4$
(a)

Here, $u_{s}=50 \mathrm{~ms}^{-1}, v_{L}=0, v=350 \mathrm{~ms}^{-1}$
When source is moving towards observer,
$v^{\prime}=1000$
$v^{\prime}=\frac{u \times v}{u-u_{s}}$
$v=\frac{\left(u-u_{s}\right) v^{\prime}}{u}$
$=\frac{(350-50) 1000}{350}=\frac{6000}{7} \mathrm{~Hz}$
When source is moving away from observer,
$v^{\prime}=\frac{u \times v}{u+v_{s}}$
$=\frac{350}{(350+50)} \times \frac{6000}{7}$
$=750 \mathrm{~Hz}$

20
(d)

Frequency is decreasing (becomes half), it means source is going away from the observe.
In this case frequency observed by the observer is
$n^{\prime}=n\left(\frac{v}{v+v_{S}}\right) \Rightarrow \frac{n}{2}=n\left(\frac{v}{v+v_{S}}\right) \Rightarrow v_{S}=v$
(a)

From $n=\frac{1}{l D} \sqrt{\frac{T}{\pi \rho}}$
When radius of string is doubled, Diameter D becomes twice. As T and ρ are same, n becomes $1 / 2$, ie, $n / 2$.
(d)

Here, $A_{1}=A, A_{2}=A, \phi=120^{\circ}$
The amplitude of the resultant wave is
$A_{R}=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \phi}$
$=\sqrt{A^{2}+A^{2}+2 A A \cos 120^{\circ}}$
$=\sqrt{A^{2}+A^{2}-A^{2}} \quad\left[\because \cos 120^{\circ}=-\frac{1}{2}\right]$
$\therefore A_{R}=A$
(c)

According to the question frequencies of first and last tuning forks are $2 n$ and n respectively.
Hence frequency is given arrangement are as follows

$\Rightarrow 2 n-24 \times 3=n \Rightarrow n=72 \mathrm{~Hz}$
So, frequency of $21^{\text {st }}$ tuning fork
$n_{21}=(2 \times 72-20 \times 3)=84 \mathrm{~Hz}$
(c)
$\frac{I_{1}}{I_{2}}=\frac{4}{1}=\frac{a^{2}}{b^{2}}: \frac{a}{b}=\frac{2}{1}$
$\therefore \frac{I_{\text {max }}}{I_{\text {min }}}=\frac{(a+b)^{2}}{(a-b)^{2}}=\frac{(2+1)^{2}}{(2-1)^{2}}=9$
Now, $L_{1}-L_{2}=10 \log \frac{I_{\text {max }}}{I_{0}}-10 \log \frac{I_{\text {mim }}}{I_{0}}$
$=10 \log \frac{I_{\max }}{I_{\text {min }}}=10 \log 9$
$L_{1}-L_{2}=10 \log 3^{2}=20 \log 3$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	A	A	C	D	A	C	D	B	B	B		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	D	A	A	D	A	D	A	D	C	C		

