CLASS : XITH DATE :

(a)

(a)

(c)

(c)

(b)

Solutions

SUBJECT : PHYSICS DPP NO. : 9

Topic :-WAVES

1

Here, $\frac{ct}{\lambda}$ is dimensionless and unit of ct is same as that of x. Also unit of λ is same as that of A, which is also the unit of x

2

 $Y=2\cos 2\pi(330 \text{ t-x})$ $\omega = 2\pi \times 330$

$$T = \frac{1}{330}s$$

3

Resonance occurs when amplitude is maximum*ie*, when the denominator of this equation is minimum.

4 **(d)**

Number of waves per minute = 54 \therefore Number of waves per second = 54/60 Now $v = n\lambda \Rightarrow n = \frac{54}{60} \times 10 = 9m/s$

5 (a)

 $v_{\rm max} = a\omega = 3 \times 10 = 30$

6

Resultant amplitude

$$A_R = 2A\cos\left(\frac{\theta}{2}\right) = 2 \times (2a)\cos\left(\frac{\theta}{2}\right) = 4a\cos\left(\frac{\theta}{2}\right)$$
(b)

8

Let the base frequency be *n* for closed pipe then notes are *n*, 3*n*, 5*n*

 \therefore note $3n = 255 \Rightarrow n = 85$, note $5n = 85 \times 5 = 425$ note $7n = 7 \times 85 = 595$

9

 $y_1 = 10^{-6} \sin[100 t + (x/50) + 0.5]$ $y_2 = 10^{-6} \sin\left[100t + \left(\frac{x}{50}\right) + \left(\frac{\pi}{2}\right)\right]$ Phase difference ϕ = [100t + (x/50) + 1.57] - [100t + (x/50) + 0.5]= 1.07 radians

11 **(d)**

In *n* is frequency of first fork, then frequency of the last (10th fork) = n + 4(10 - 1) = 2n

 \therefore *n* = 36 and 2 *n* = 72

12 **(a)**

Phase difference is 2π means constrictive interference so resultant amplitude will be maximum

13 **(a)**

At nodes pressure change (strain) is maximum

14 **(d)**

According to Laplace, the speed of sound in gas is given by

$$v = \sqrt{\frac{\gamma RT}{M}},$$

Where γ is ratio of specific heats, M the molecular weight, R the gas constant and T the temperature,

$$\therefore \frac{v_o}{v_H} = \sqrt{\frac{M_H}{M_o}}$$

$$\therefore \frac{v_o}{v_H} = \sqrt{\frac{1}{16}} = \frac{1}{4}$$

$$\therefore v_o: v_H = 1:4$$

(a)

15

Here, $u_s = 50 \text{ms}^{-1}$, $v_L = 0$, $v = 350 \text{ms}^{-1}$

When source is moving towards observer,

$$v' = 1000$$

 $v' = \frac{u \times v}{u - u_s}$
 $v = \frac{(u - u_s)v'}{u}$
 $= \frac{(350 - 50)1000}{350} = \frac{6000}{7}$ Hz

When source is moving away from observer,

$$v' = \frac{u \times v}{u + v_s}$$

$$=\frac{350}{(350+50)}\times\frac{6000}{7}$$

= 750 Hz

(d)

16

Frequency is decreasing (becomes half), it means source is going away from the observe. In this case frequency observed by the observer is

$$n' = n\left(\frac{v}{v+v_S}\right) \Rightarrow \frac{n}{2} = n\left(\frac{v}{v+v_S}\right) \Rightarrow v_S = v$$
(a)

17

From $n = \frac{1}{lD} \sqrt{\frac{T}{\pi \rho}}$

When radius of string is doubled, Diameter *D* becomes twice. As *T* and ρ are same, *n* becomes 1/2, ie, n/2.

18

(d)

(c)

Here, $A_1 = A, A_2 = A, \phi = 120^{\circ}$ The amplitude of the resultant wave is $A_R = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\phi}$

$$= \sqrt{A^2 + A^2 + 2AA\cos 120^\circ}$$
$$= \sqrt{A^2 + A^2 - A^2} \qquad \begin{bmatrix} \because \cos 120^\circ = -\frac{1}{2} \end{bmatrix}$$
$$\therefore A_R = A$$

19

According to the question frequencies of first and last tuning forks are 2*n* and *n* respectively.

Hence frequency is given arrangement are as follows

 $\Rightarrow 2n - 24 \times 3 = n \Rightarrow n = 72 Hz$ So, frequency of 21st tuning fork

 $n_{21} = (2 \times 72 - 20 \times 3) = 84 \, Hz$

20

(c)

$$\frac{l_1}{l_2} = \frac{4}{1} = \frac{a^2}{b^2} \div \frac{a}{b} = \frac{2}{1}$$

$$\therefore \frac{I_{max}}{I_{min}} = \frac{(a+b)^2}{(a-b)^2} = \frac{(2+1)^2}{(2-1)^2} = 9$$
Now, $L_1 - L_2 = 10 \log \frac{I_{max}}{I_0} - 10 \log \frac{I_{mim}}{I_0}$

$$= 10 \log \frac{I_{max}}{I_{min}} = 10 \log 9$$
 $L_1 - L_2 = 10 \log 3^2 = 20 \log 3$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
Α.	А	А	С	D	А	С	D	В	В	В
Q.	11	12	13	14	15	16	17	18	19	20
Α.	D	А	А	D	А	D	А	D	С	С

