CLASS : XITH
Solutions
SUBJECT : PHYSICS
DPP NO. : 8

Topic :-WAVES

1
(d)

Compare the given equation with
$y=a \sin (\omega t+k x) \Rightarrow \omega=2 \pi n=100 \Rightarrow n=\frac{50}{\pi} \mathrm{~Hz}$
$k=\frac{2 \pi}{\lambda}=1 \Rightarrow \lambda=2 \pi$ and $v=\omega / k=100 \mathrm{~m} / \mathrm{s}$
Since ' + ' is given between t terms and x term, so wave is travelling in negatie x-direction
3
(d)

Frequency $f=\frac{1}{2 L} \sqrt{\frac{T}{M}}=\frac{1}{2 L} \sqrt{\frac{T}{\pi r^{2}(1) \rho}}$
$=\frac{1}{2 r L} \sqrt{\frac{T}{\pi \rho}} \Rightarrow \frac{f_{1}}{f_{2}}=\left(\frac{r_{2}}{r_{1}}\right)\left(\frac{L_{2}}{L_{1}}\right) \Rightarrow \frac{1}{2}=\left(\frac{r_{2}}{r_{1}}\right)\left(\frac{4}{1}\right)$
$\Rightarrow \frac{r_{2}}{r_{1}}=\frac{1}{8} \Rightarrow \frac{r_{1}}{r_{2}}=\frac{8}{1}$
4
(c)

The motorist receives two sound waves, direct one from the band and that reflected from the wall, figure. For direct sound waves, apparent frequency
$f^{\prime}=\frac{\left(v+v_{m}\right) f}{v+v_{b}}$

For reflected sound waves.
Frequency of sound wave reflected from the wall
$f^{\prime \prime}=\frac{v \times f}{v-v_{b}}$
Frequency of reflected waves as received by the moving motorist,
$f^{\prime}=\frac{\left(v+v_{m}\right) f^{\prime \prime}}{v}=\frac{\left(v+v_{m}\right) f}{v-v_{b}}$
\therefore Beat frequency $=f^{\prime \prime}-f^{\prime}$
$=\frac{\left(v+v_{m}\right) f}{v-v_{b}}-\frac{\left(v+v_{m}\right) f}{v+v_{b}}=\frac{2 v_{b}\left(v+v_{m}\right) f}{v^{2}-v_{b}^{2}}$
(c)

For closed pipe in general $n=\frac{v}{4 l}(2 N-1) \Rightarrow n \propto \frac{1}{l}$
i.e. if length of air column decreases frequency increases
(b)

For infrasonics, frequency $n<20 \mathrm{cms}^{-1}$
$\lambda=\frac{u}{n}>\frac{330}{20}=15 \mathrm{~m}=10^{1} \mathrm{~m}$
(a)

Assin $(90 \pm \theta=\cos \theta)$, therefore, phase difference between the two waves is 90° or $\frac{\pi}{2}$.
(b)
$n^{\prime}=n\left(\frac{v}{v-v_{S}}\right)=600\left(\frac{330}{300}\right)=660 \mathrm{cps}$
(c)

Octave stands for an interval 2: 1 . Therefore octaves will have a frequency ratio $=2^{3}=8$.
(c)
$\frac{I_{\max }}{I_{\min }}=\left(\frac{\frac{a_{1}}{a_{2}}+1}{\frac{a_{1}}{a_{2}}-1}\right)^{2}=\left(\frac{\frac{4}{3}+1}{\frac{4}{3}-1}\right)^{2}=\frac{49}{1}$
(b)
$n^{\prime}=n\left(\frac{v-v_{O}}{v+v_{S}}\right)=n\left(\frac{340-10}{340+10}\right)=1950$
$\Rightarrow n=2068 \mathrm{~Hz}$
(d)

Comparing the given equation with standard equation
$y=a \sin 2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right) \Rightarrow T=0.04 \sec \Rightarrow v=\frac{1}{T}=25 \mathrm{~Hz}$
Also $(A)_{\max }=\omega^{2} a=\left(\frac{2 \pi}{T}\right)^{2} \times a=\left(\frac{2 \pi}{0.04}\right) \times 3$
$=7.4 \times 10^{4} \mathrm{~cm} / \mathrm{sec}^{2}$
(c)

In our case both source and observer are moving, so perceived frequency
$v^{\prime}=\frac{v\left(c-v_{o}\right)}{\left(c-v_{S}\right)}$
Where v_{o} is the velocity of observer, v_{s} is the velocity of source and c is velocity of sound. Given,
$v_{o}=-2 v, v_{s}=-v$
$\therefore v^{\prime}=\frac{v(c+2 v)}{(c+v)}$
(d)

Given,
$y=5 \sin \left(30 \pi t-\frac{\pi}{7} x+30^{\circ}\right) \ldots$ (i)
Now,
$y=a \sin \left(\frac{2 \pi t}{T}-\frac{2 \pi x}{\lambda}+\phi\right) \ldots$ (ii)
On comparing Eqs. (i) and (ii)
$\frac{2 \pi x}{\lambda}=\frac{\pi x}{7}$
$\Rightarrow \lambda=14 m$
We know that relation between phase difference and path difference
$\Delta \phi=\frac{2 \pi}{\lambda} \times \Delta x=\frac{2 \pi}{14} \times 3.5$
$\Rightarrow \Delta \phi=\frac{\pi}{2}$
(a)

When 0 is a fixed end, the formation of reflected pulse is equivalent to overlapping of two inverted pulses travelling in opposite direction as shown in figure.

Here at $t=3 \mathrm{~s}$, net displacement of all particles of the string will be zero ie the string will be straight as shown in figure.

Choice (a) is correct.
(b)

If d is the distance between man and reflecting surface of sound then for hearing echo $2 d=v \times t \Rightarrow d=\frac{330 \times 1.5}{2}=247.5 \mathrm{~m}$
(a)

Fundamental frequency of cylindrical open tube
$\mathrm{n}=\frac{\mathrm{v}}{2 \mathrm{~L}}=390 \mathrm{~Hz}$
When it is immersed in water it become a closed tube of length
$\frac{3}{4}^{\text {th }}$ of the initial length.
Therefore, its fundamental frequency is
$\mathrm{n}^{\prime}=\frac{\mathrm{v}}{4\left(\frac{3}{4} \mathrm{~L}\right)}=\frac{\mathrm{v}}{3 \mathrm{~L}}=\frac{2}{3}\left(\frac{\mathrm{v}}{2 \mathrm{~L}}\right)$
$=\frac{2}{3} \times 390 \mathrm{~Hz}=260 \mathrm{~Hz}$
(a)

Time required for a point to move from maximum displacement to zero displacement is
$t=\frac{T}{4}=\frac{1}{4 n}$
$\Rightarrow n=\frac{1}{4 t}=\frac{1}{4 \times 0.170}=1.47 \mathrm{~Hz}$
(b)

From Doppler's effect, perceived frequency is
$v^{\prime}=v\left(\frac{v-v_{o}}{v-v_{s}}\right)$
$v_{s}=72 \mathrm{kmh}^{-1}=\frac{72 \times 1000}{60 \times 60}=20 \mathrm{~ms}^{-1}$
$v_{o}=0, v=332 \mathrm{~ms}^{-1}, v^{\prime}=260 \mathrm{~Hz}$
$260=v\left(\frac{332}{332-20}\right)$
$\Rightarrow v=\frac{260 \times 312}{332}=244 \mathrm{~Hz}$
(b)

From the relation, $v_{m}=\sqrt{\frac{\gamma p}{\rho}}$
Where, $p=$ pressure of the gas
$\mathrm{P}=$ density of the gas
Since, density of moist air is less than that of dry air
i.e., $\quad \rho_{m}<\rho_{d}$

Therefore, $v_{m}>v_{d}$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	D	D	D	C	C	B	A	B	C	C	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	B	D	C	D	A	B	A	A	B	B	

