CLASS : XITh
Solutions

Topic :-WAVES

1

2
(b)

Speed of sound in gases is given by
$v=\sqrt{\frac{\gamma R T}{M}} \Rightarrow v \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{v_{1}}{v_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$
(a)

From the given equation $k=\frac{2 \pi}{k}=$ Co-efficient of $x=\frac{\pi}{4} \Rightarrow \lambda=8 \mathrm{~m}$
(c)

When train is approaching frequency heard by the observer is
$n_{a}=n\left(\frac{v}{v-v_{S}}\right) \Rightarrow 219=n\left(\frac{340}{340-v_{S}}\right)$
When train is receding (goes away), frequency heard by the observer is
$n_{r}=n\left(\frac{v}{v+v_{S}}\right) \Rightarrow 184=n\left(\frac{340}{340+v_{S}}\right)$
On solving equation (i) and (ii) we get $n=200 \mathrm{~Hz}$ and $v_{S}=29.5 \mathrm{~m} / \mathrm{s}$
(d)

First overtone for closed pipe $=\frac{3 v}{4 l}$
Fundamental frequency for open pipe $=\frac{v}{2 l}$
First overtone for open pipe $=\frac{2 v}{2 l}$
(c)

Frequency of $2^{\text {nd }}$ overtone $n_{3}=5 n_{1}=5 \times 50=250 \mathrm{~Hz}$
(a)

Number of extra waves received s ${ }^{-1}= \pm u / \lambda$
\therefore Number of beats s ${ }^{-1}=\frac{u}{\lambda}-(-u / \lambda)=\frac{2 u}{\lambda}$
(a)

Maximum pressure at closed end will be atmosphere pressure adding with acoustic wave
pressure
So $\rho_{\text {max }}=\rho_{A}+\rho_{0}$ and $\rho_{\text {min }}=\rho_{A}-\rho_{0}$
Thus $\frac{\rho_{\text {max }}}{\rho_{\text {min }}}=\frac{\rho_{A}+\rho_{0}}{\rho_{A}-\rho_{0}}$
(a)
$v=\sqrt{\frac{\gamma R T}{M}} \Rightarrow v \propto \sqrt{\frac{\gamma}{M}}$. Since $\frac{\gamma}{M}$ is maximum for H_{2} so sound velocity is maximum in H_{2}
(b)

Path difference between the wave reaching at D
$\Delta x=L_{2} P-L_{1} P=\sqrt{40^{2}+9^{2}}-40=41-40=1 m$
For maximum $\Delta x=(2 n) \frac{\lambda}{2}$
For first maximum $(n=1) \Rightarrow 1=2(1) \frac{\lambda}{2} \Rightarrow \lambda=1 m$
$\Rightarrow n=\frac{v}{\lambda}=330 \mathrm{~Hz}$
(a)

Velocity of sound $v \propto \sqrt{T}$
Time
$t \propto \frac{1}{\sqrt{v}}$
$\therefore t \propto \frac{1}{\sqrt{T}}$
$\frac{t_{1}}{t_{2}}=\sqrt{\frac{T_{1}}{T_{2}}}$
$\frac{2}{t_{2}}=\sqrt{\frac{273+30}{273+10}}$

$\frac{2}{t_{2}}=\sqrt{\frac{303}{283}}=1.03$
$t_{2}=\frac{2}{1.03}=1.9 \mathrm{~s}$
(c)

Frequency of p th harmonic
$n=\frac{p v}{2 l} \Rightarrow p=\frac{2 l n}{v}=\frac{2 \times 0.33 \times 1000}{330}=2$
(a)
$n_{\text {Before }}=\frac{v}{v-v_{c}} n$ and $n_{\text {After }}=\frac{v}{v+v_{c}} . n$

$\frac{n_{\text {Before }}}{n_{\text {After }}}=\frac{11}{9}=\left(\frac{v+v_{c}}{v-v_{c}}\right) \Rightarrow . v_{c} \Rightarrow \frac{v}{10}$
(c)

Since frequency remains unchanged
$\mathrm{V}=\mathrm{v}^{\prime}$
$\frac{v}{\lambda}=\frac{v^{\prime}}{\lambda^{\prime}}$
$\frac{v}{\lambda}=\frac{2 v}{\lambda^{\prime}}$
$\lambda^{\prime}=\frac{2 v}{v} \lambda$
$\lambda^{\prime}=2 \lambda$
Hence, its wavelength will become twice.
16 (d)
The given standing wave is shown in the figure

As length of loop or segment is
$\frac{\lambda}{2}$
So length of 2 segments is
$2\left(\frac{\lambda}{2}\right)$
$\therefore 2 \frac{\lambda}{2}=1.21 \AA$
$\Rightarrow \lambda=1.21 \AA$
(b)
$n_{1}-n_{2}=6$
$\Rightarrow \frac{1}{2 l} \sqrt{\frac{T^{\prime}}{m}}-\frac{1}{2 l} \sqrt{\frac{T}{m}}=6$
$\Rightarrow \frac{1}{2 l} \sqrt{\frac{T^{\prime}}{m}}-600=6$
$\frac{1}{2 l} \sqrt{\frac{T^{\prime}}{m}}=606=$ Fundamental frequency ...(i)
Given,
$\frac{1}{2 l} \sqrt{\frac{T}{m}}=600$
Dividing Equation (i) by Equation (ii), we get
$\frac{\frac{1}{2 l} \sqrt{\frac{T^{\prime}}{m}}}{\frac{1}{2 l} \sqrt{\frac{T}{m}}}=\frac{606}{600}$
$\Rightarrow \sqrt{\frac{T^{\prime}}{T}}=(1.01) \Rightarrow \frac{T^{\prime}}{T}=(1.02)$
$\Rightarrow T^{\prime}=T(1.02)$
Increase in tension
$\Delta T^{\prime}=T \times 1.02-T=(0.02 \mathrm{~T})$
Hence, $\frac{\Delta T^{\prime}}{T}=0.02$

20
(a)

Since sources of frequency x gives 8 beats per second with frequency 250 Hz , it's possible frequencies are 258 or 242 . As source of frequency x gives 12 beats per second with a frequency 270 Hz , it's possible frequencies are 282 and 258 Hz . The only possible frequencies of x which gives 8 beats with frequency 250 Hz also 12 beats per second with 270 Hz is 258 Hz
(a)

Due to rise in temperature, the speed of sound increases. Since $n=\frac{v}{\lambda}$ and λ remains unchanged, hence n increases
(c)

$$
n=\frac{1}{2 l} \sqrt{\frac{T}{\pi r^{2} \rho}} \propto \sqrt{\frac{T}{r^{2} \rho}}
$$

$$
\Rightarrow \frac{n_{1}}{n_{2}}=\sqrt{\left(\frac{T_{1}}{T_{2}}\right)\left(\frac{r_{2}}{r_{1}}\right)^{2}\left(\frac{\rho_{2}}{\rho_{1}}\right)}=\sqrt{\left(\frac{1}{2}\right)\left(\frac{2}{1}\right)^{2}\left(\frac{1}{2}\right)}=1
$$

$\therefore n_{1}=n_{2}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	B	A	C	D	B	C	A	A	A	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	C	A	C	B	D	B	A	A	C			

