CLASS: XITH
DATE: **Solutions**
SUBJECT: PHYSICS
DPP NO. : 7

Topic: -WAVES

(b)
Speed of sound in gases is given by
$$v = \sqrt{\frac{\gamma RT}{M}} \Rightarrow v \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{M_2}{M_1}}$$

(a)
From the given equation $k = \frac{2\pi}{k} = \text{Co-efficient of } x = \frac{\pi}{4} \Rightarrow \lambda = 8m$

(c)
When train is approaching frequency heard by the observer is
 $n_{\alpha} = n\left(\frac{v}{v-v_{S}}\right) \Rightarrow 219 = n\left(\frac{340}{340+v_{S}}\right) ...(i)$
When train is receding (goes away), frequency heard by the observer is
 $n_r = n\left(\frac{v}{v+v_{S}}\right) \Rightarrow 184 = n\left(\frac{340}{340+v_{S}}\right) ...(i)$
On solving equation (i) and (ii) we get $n = 200Hz$ and $v_{S} = 29.5m/s$

(d)
First overtone for closed pipe $= \frac{3v_1}{2l}$
First overtone for open pipe $= \frac{2v}{2l}$
First overtone for open pipe $= \frac{2v}{2l}$

(a)
Frequency of 2^{nd} overtone $n_3 = 5n_1 = 5 \times 50 = 250Hz$

(a)
Number of extra waves received $s^{-1} = \pm u/\lambda$

 \therefore Number of beats s⁻¹ = $\frac{u}{\lambda} - (-u/\lambda) = \frac{2u}{\lambda}$

8

(a)

Maximum pressure at closed end will be atmosphere pressure adding with acoustic wave

pressure So $\rho_{\max} = \rho_A + \rho_0$ and $\rho_{\min} = \rho_A - \rho_0$ Thus $\frac{\rho_{\max}}{\rho_{\min}} = \frac{\rho_A + \rho_0}{\rho_A - \rho_0}$ 9 (a) $v = \sqrt{\frac{\gamma RT}{M}} \Rightarrow v \propto \sqrt{\frac{\gamma}{M}}$. Since $\frac{\gamma}{M}$ is maximum for H_2 so sound velocity is maximum in H_2 10 **(b)** Path difference between the wave reaching at *D* $\Delta x = L_2 P - L_1 P = \sqrt{40^2 + 9^2} - 40 = 41 - 40 = 1m$ For maximum $\Delta x = (2n)\frac{\lambda}{2}$ For first maximum $(n = 1) \Rightarrow 1 = 2(1)\frac{\lambda}{2} \Rightarrow \lambda = 1m$ $\Rightarrow n = \frac{v}{\lambda} = 330Hz$ 11 (a) Velocity of sound $v \propto \sqrt{T}$ Time $t \propto \frac{1}{\sqrt{n}}$ $\therefore t \propto \frac{1}{\sqrt{T}}$ $\frac{t_1}{t_2} = \int \frac{T_1}{T_2}$ $\frac{2}{t_2} = \sqrt{\frac{273 + 30}{273 + 10}}$ $\frac{2}{t_2} = \sqrt{\frac{303}{283}} = 1.03$ $t_2 = \frac{2}{1.03} = 1.9s$ 12 (c) Frequency of *p* th harmonic $n = \frac{pv}{2l} \Rightarrow p = \frac{2ln}{v} = \frac{2 \times 0.33 \times 1000}{330} = 2$ 13 (a) $n_{Before} = \frac{v}{v - v_c} n$ and $n_{After} = \frac{v}{v + v_c} n$.

PRERNA EDUCATION

Stationary obse

$$\frac{n_{Before}}{n_{After}} = \frac{11}{9} = \left(\frac{v + v_c}{v - v_c}\right) \Rightarrow v_c \Rightarrow \frac{v}{10}$$

Since frequency remains unchanged V=v'

$$\frac{v}{\lambda} = \frac{v'}{\lambda'}$$
$$\frac{v}{\lambda} = \frac{2v}{\lambda'}$$
$$\lambda' = \frac{2v}{v}\lambda$$
$$\lambda' = 2\lambda$$

(d)

(c)

Hence, its wavelength will become twice.

16

The given standing wave is shown in the figure

As length of loop or segment is $\frac{\lambda}{2}$

So length of 2 segments is

$$2\left(\frac{\lambda}{2}\right)$$
$$\therefore 2\frac{\lambda}{2} = 1.21\text{\AA}$$
$$\implies \lambda = 1.21\text{\AA}$$

17

(b)

$$n_1 - n_2 = 6$$

 $\Rightarrow \frac{1}{2l} \sqrt{\frac{T'}{m}} - \frac{1}{2l} \sqrt{\frac{T}{m}} = 6$
 $\Rightarrow \frac{1}{2l} \sqrt{\frac{T'}{m}} - 600 = 6$
 $\frac{1}{2l} \sqrt{\frac{T'}{m}} = 606 = \text{Fundamental frequency ...(i)}$
Given,
 $\frac{1}{2l} \sqrt{\frac{T}{m}} = 600$...(ii)
Dividing Equation (i) by Equation (ii), we get
 $\frac{1}{2l} \sqrt{\frac{T'}{m}} = \frac{606}{600}$

$$\Rightarrow \sqrt{\frac{T'}{T}} = (1.01) \Rightarrow \frac{T'}{T} = (1.02)$$

$$\Rightarrow T' = T(1.02)$$

Increase in tension
$$\Delta T' = T \times 1.02 - T = (0.02T)$$

Hence, $\frac{\Delta T'}{T} = 0.02$

18

(a)

(a)

Since sources of frequency x gives 8 beats per second with frequency 250 Hz, it's possible frequencies are 258 or 242. As source of frequency x gives 12 beats per second with a frequency 270 Hz, it's possible frequencies are 282 and 258 Hz. The only possible frequencies of x which gives 8 beats with frequency 250 Hz also 12 beats per second with 270 Hz is 258 Hz

19

Due to rise in temperature, the speed of sound increases. Since $n = \frac{v}{\lambda}$ and λ remains unchanged, hence *n* increases

20

(c)

$$n = \frac{1}{2l} \sqrt{\frac{T}{\pi r^2 \rho}} \propto \sqrt{\frac{T}{r^2 \rho}}$$

$$\Rightarrow \frac{n_1}{n_2} = \sqrt{\left(\frac{T_1}{T_2}\right) \left(\frac{r_2}{r_1}\right)^2 \left(\frac{\rho_2}{\rho_1}\right)} = \sqrt{\left(\frac{1}{2}\right) \left(\frac{2}{1}\right)^2 \left(\frac{1}{2}\right)} = 1$$

$$\therefore n_1 = n_2$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
Α.	В	А	С	D	В	С	А	А	А	В
Q.	11	12	13	14	15	16	17	18	19	20
Α.	А	С	А	С	В	D	В	А	А	С

