CLASS : XITh
Solutions
SUBJECT : PHYSICS
DPP NO. : 6

## Topic :-WAVES

1
(a)
$y(x, t)=e^{-\left(a x^{2}+b t^{2}+2 \sqrt{a b} t x\right)}$
$=e^{-(\sqrt{a} x+\sqrt{b} t)^{2}}$
It is a function of type
$\therefore \mathrm{y}(\mathrm{x}, \mathrm{t})$ represents wave travelling along -x direction.
Speed of wave $=\frac{\omega}{k}=\frac{\sqrt{b}}{\sqrt{a}}=\sqrt{\frac{b}{a}}$
2
(c)

Total energy is conserved
3
(c)

If after $t$ time, displacement of particle is $y$, then the rquation of progressive wave

$Y=A \cos (a x+b t)$
4
(a)
$y=5 \sin \frac{\pi}{2}(100 t-x)$
$y=5 \sin \left(\frac{100 \pi}{2} t-\frac{\pi}{2} x\right)$
$y=5 \sin \left(50 \pi t-\frac{\pi}{2} x\right)$
The general equation
$y=a \sin (\omega t-k x)$
$\therefore \omega=50 \pi$
$T=\frac{2 \pi}{\omega}=\frac{2 \pi}{50 \pi}=\frac{1}{25}$
Or $\quad T=0.04 \mathrm{~s}$
(a)
$n \propto \frac{1}{l} \Rightarrow n_{1} l_{1}=n_{2} l_{2} \Rightarrow(n+4) 49=(n-4) 50 \Rightarrow n=396$
(d)

Beats are the periodic and repeating function heard in the intensity of sound when two sound waves of very similar frequency interface with one another.
(a)

No of beats, $x=\Delta n=\frac{30}{3}=10 \mathrm{~Hz}$
$\Rightarrow$ Also $\Delta n=v\left[\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right]=v\left[\frac{1}{5}-\frac{1}{6}\right]=10 \Rightarrow v=300 \mathrm{~m} / \mathrm{s}$
(c)

Relation of path difference and phase difference is given by
$\Delta \Phi=\frac{2 \pi}{\gamma} \times \Delta x$
Where $\Delta \mathrm{x}$ is path difference.
But path difference between two crests $\Delta x=\lambda$
Hence, $\Delta \Phi=\frac{2 \pi}{\lambda} \times \lambda=2 \pi$
(c)

Here, $v=330 \mathrm{~ms}^{-1}$
Phase difference of $1.6 \pi=40 \mathrm{~cm}$
Phase difference of $2 \pi=\frac{40}{1.6 \pi} \times 2 \pi \mathrm{~cm}=50 \mathrm{~cm}$
ie, $\lambda=50 \mathrm{~cm}=0.5 \mathrm{~cm}$
$n=\frac{v}{\lambda}=\frac{330}{0.5}=660 \mathrm{~Hz}$
(d)

Speed of sound $v \propto \sqrt{T}$ and it is independent of pressure
(b)

Position of first node $=16 \mathrm{~cm}$
$\frac{\lambda}{2}+e=16 \mathrm{~cm}$
Where e =end correction
Position of second node $=46 \mathrm{~cm}$
$\frac{\lambda}{2}+\frac{\lambda}{2}+e=46 \mathrm{~cm}$
Dividing Eq. (ii) by Eq.(i)
$\frac{\lambda}{2}=30 \mathrm{~cm}$
$\lambda=60 \mathrm{~cm}=\frac{60}{100} \mathrm{~m}$
$\therefore$ speed of sound $\mathrm{v}=\mathrm{v} \lambda$
$=500 \times \frac{60}{100}=300 \mathrm{~ms}^{-1}$
(b)

Using $n=\frac{1}{2 l} \sqrt{\frac{T}{m}}$
Number of beats $=\frac{1}{2} \sqrt{\frac{T}{m}}\left[\frac{1}{l_{2}}-\frac{1}{l_{1}}\right]$
$=\frac{1}{2} \sqrt{\frac{20}{1 \times 10^{-3}}}\left[\frac{1}{49.1 \times 10^{-2}}-\frac{1}{51.6 \times 10^{-2}}\right]=7$
(d)

By using $n^{\prime}=n \frac{v}{v-v_{S}} \Rightarrow \frac{n^{\prime}}{n}=\left(\frac{v}{v-S}\right)$
(d)

The nodes and antinodes are formed in a standing wave pattern as a result of the interface of two waves. Distance between two nodes is half wavelength ( $\lambda$ )
$\leftarrow$ 元 $/ 2 \rightarrow 1$


Standerd equation of standing wave is
$y=2_{a} \sin \frac{2 \pi x}{\gamma} \cos \frac{2 \pi v t}{\gamma}$
Where a is amplitude, the wavwlength

## (b)

Let speed of observer be $v_{L}=v$ along $Y$-axis and speed of source the $v_{s}=2 v_{L}=2 v$ along $X$-axis
$\therefore P S=2(O L)$

$\cos \alpha=\frac{2}{\sqrt{5}}$ and $\cos \beta=\frac{2}{\sqrt{5}}$
Now, apparent frequency $n$ ' is given by
$n^{\prime}=\frac{\left(v-v_{L} \cos \beta\right) n}{\left(v+v_{L} \cos \alpha\right)}$
Where $v$ is velocity of sound.
$n^{\prime}=\frac{(v-v \sqrt{5}) n}{(v+4 v \sqrt{5})}$
Clearly, $n^{\prime}$ is constant, but $n^{\prime}<n$. This is shown in curve (b).
(c)

Frequency of sonometer wire is given by
$v=\frac{1}{2 l} \sqrt{\frac{T}{m}}=\frac{1}{2 l} \sqrt{\frac{T}{\pi r^{2} p}}$
$v_{1}=\frac{1}{2 l_{1}} \sqrt{\frac{T_{1}}{\pi r_{1}^{2} \rho_{1}}}$
$v_{2}=\frac{1}{2 l_{2}} \sqrt{\frac{T_{2}}{\pi r_{2}^{2} \rho_{2}}}$
$\therefore \frac{v_{1}}{v_{2}}=\frac{l_{2}}{l_{1}} \sqrt{\frac{T_{1}}{T_{2}} \times \frac{r_{2}^{2}}{r_{1}^{2}} \times \frac{\rho_{2}}{\rho_{1}}}$
$\frac{v_{1}}{v_{2}}=\frac{35}{36} \sqrt{\frac{8}{1} \times \frac{1}{16} \times \frac{2}{1}}$
$\because \mathrm{v}_{1}<\mathrm{v}_{2}$ and $\mathrm{v}_{2}=360 \mathrm{~Hz}$
Therefore,
$v=360 \times \frac{35}{36}$
$v_{1}=350 \mathrm{~Hz}$
So, number of beats produced $=v_{1}-v_{2}$
$=360-350=10$
20
(b)
$v=\frac{\text { Co }- \text { efficient of } t}{\text { Co - efficient of } x}=\frac{1 / 2}{1 / 4}=2 \mathrm{~m} / \mathrm{s}$
Hence $d=v t=2 \times 8=16 \mathrm{~m}$

| ANSWER-KEY |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| A. | A | C | C | A | A | D | D | A | C | C |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |  |
| A. | D | B | B | D | C | C | D | B | C | B |  |
|  |  |  |  |  |  |  |  |  |  |  |  |



