CLASS : XITH
Solutions

Topic :-WAVES

1
(a)

Loudness, $L=10 \log _{10} \frac{I}{I_{0}}$
$60=10 \log _{10} \frac{I_{1}}{I_{0}}$
$\Rightarrow \frac{I_{1}}{I_{0}}=10^{6}$
similarly, $\quad 30=10 \operatorname{lig}_{10} \frac{I_{2}}{I_{0}}$
$\frac{I_{2}}{I_{0}}=10^{3}$
Dividing Eq. (i) by Eq. (ii), we get
$\frac{I_{1}}{I_{2}}=1000$
(a)

Path difference for a given phase difference δ is given by
$\Delta x=\frac{\lambda}{2 \pi} \delta$
Given that $\delta=60^{\circ}=\frac{\pi}{3}$
$\Delta x=\frac{\lambda}{2 \pi} \times \frac{\pi}{3} \therefore \Delta x=\frac{\lambda}{6}$
(a)

Velocity of propagation
$\mathrm{x}=\frac{\text { Coefficient of } \mathrm{t}}{\text { coefficient of } \mathrm{x}}=\frac{2 \pi / 0.01}{2 \pi / 0.3}=30 \mathrm{~ms}^{-1}$
(b)

If $\rho_{\mathrm{H}}=1$, then $\rho_{\text {mix }}=\frac{4 \times 1+1 \times 16}{(4+1)}=4$
$\frac{\mathrm{v}_{\text {mix }}}{\mathrm{v}_{\mathrm{H}}}=\sqrt{\frac{\rho_{\mathrm{H}}}{\rho_{\text {mix }}}}=\sqrt{\frac{1}{4}}=\frac{1}{2}$
$v_{\text {mix }}=\frac{\mathrm{v}_{\mathrm{H}}}{2}=\frac{1224}{2}=612 \mathrm{~ms}^{-1}$
(b)

Frequency $=\frac{\text { velocity }}{\text { Wavelength }}$
$\therefore f_{1}=\frac{v}{\lambda_{1}}=\frac{330}{5}=66 \mathrm{~Hz}$
And $f_{2}=\frac{v}{\lambda_{2}}=\frac{330}{5.5}=60 \mathrm{~Hz}$
Number of beats per second

$$
=f_{1}-f_{2}=66-60=6
$$

Given,
Progressive wave $y=a \sin (k x-\omega t)$
When reflected by right wall
Progressive wave $\left.y^{\prime}=a \sin [k(-x)-w t)\right]$
Or $y^{\prime}=a \sin [-(k x+\omega t)]$
Or $y^{\prime}=a \sin (k x+\omega t)$

(b)

For hearing beats, difference of frequencies should be less than 10 Hz
(b)

In close organ pipe
$v=\frac{v}{4 l}$
So,
$l=\frac{v}{4 v}$
(a)

Here, $v_{s}=0$ and v_{L} is negative where v_{S} is velocity of source and v_{L} is velocity of listener (aeroplane)

If apparent frequency is v^{\prime} and v is actual frequency, then
$v^{\prime}=\frac{v-\left(-v_{L}\right)}{v} v=\frac{v+v_{L}}{v} L$
i.e., $\mathrm{v}^{\prime}>\mathrm{v}$

So, apparent frequency will increase, it means apparent wavelength will decrease.
(b)

As is clear from figure of question
$l=\frac{\lambda_{p}}{4}, \lambda=4 l, n_{p}=\frac{v}{\lambda_{p}}=\frac{v}{4 l}$
$l=\frac{\lambda_{q}}{2}, \lambda_{q}=2 l, n_{q}=\frac{v}{\lambda_{q}}=\frac{v}{2 l}$
$l=\lambda_{r}, \lambda_{r}=l, n_{r}=\frac{v}{\lambda_{r}}=\frac{v}{l}$
$l=\frac{3 \lambda_{s}}{4}, \lambda_{s}=\frac{4 l}{3}, n_{s}=\frac{v}{\lambda_{s}}=\frac{3 v}{4 l}$
$\therefore n_{p}: n_{q}: n_{r}: n_{s}=\frac{v}{4 l}: \frac{v}{2 l}: \frac{v}{l}: \frac{3 v}{4 l}=1: 2: 3: 4$
(b)

At $t=0$ and $t=2 s$, the shape of y - x graphs are same.
(d)
$Y=10 \sin \left[\frac{2 \pi}{45} t+a\right]$
If $t=0, y=5 \mathrm{~cm}$
$5=10(\sin \mathrm{a})$
$\sin a=\frac{1}{2}$
$a=\frac{\pi}{6}$
If $\mathrm{t}=7.5 \mathrm{~g}$
Then total phase $=$
$\frac{2 \pi}{45} \times \frac{15}{2}+\frac{\pi}{6}=\frac{\pi}{3}+\frac{\pi}{6}=\frac{\pi}{2}$
(a)
$n=\frac{v}{\lambda} \propto v \Rightarrow \frac{n_{M W}}{n_{U S}} \approx \frac{3 \times 10^{8}}{3 \times 10^{2}} \approx 10^{6}: 1$
(a)

Firstly, car will be treated as an observer which is approaching the source. Then, it will be treated as a source, which is moving in the direction of sound.

Hence,
$f_{1}=f_{o}\left(\frac{v+v_{1}}{v-v_{1}}\right)$
$f_{2}=f_{o}\left(\frac{v+v_{2}}{v-v_{2}}\right)$
$\therefore f_{1}-f_{2}=\left(\frac{1.2}{100}\right) f_{o}$
$=f_{o}\left[\frac{v+v}{v+v_{1}}-\frac{v+v_{2}}{v-v_{2}}\right]$
Or
$\left(\frac{1.2}{100}\right) f_{o}=\frac{2 v\left(v_{1}-v_{2}\right)}{\left(v-v_{1}\right)\left(v-v_{2}\right)}, f_{o}$
as v_{1} and v_{2} Are very very less than v.
We can write, $\left(v-v_{1}\right)$ or $\left(v-v_{2}\right) \approx v$.
$\therefore\left(\frac{1.2}{100}\right) f_{o}=\frac{2\left(v_{1}-v_{2}\right)}{v} f_{o}$
Or $\left(v_{1}-v_{2}\right)=\frac{v \times 1.2}{200}$
$=\frac{300 \times 1.2}{200}=1.98 \mathrm{~ms}^{-1}$
$=7.128 \mathrm{~km}^{-1}$
\therefore the nearest integer is 7 .
(a)
$y=y_{1}+y_{2}=a \sin (\omega t-k x)=a \sin (\omega t-k x)$
$y=2 a \sin \omega t \cos k x$
Clearly it is equation of standing wave for position of nodes $\mathrm{y}=0$.
i.e., $x=(2 n+1) \frac{\lambda}{4}$
$\Rightarrow\left(n+\frac{1}{2}\right) \lambda=0,1,2,3$
(b)

In case of interference of two waves resultant intensity
$I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \phi$
If ϕ varies randomly with time, so $(\cos \phi)_{a v}=0$
$\Rightarrow I=I_{1}+I_{2}$
For n identical waves, $I=I_{0}+I_{0}+\ldots .=n I_{0}$
Here $I=10 I_{0}$
(a)

According to Doppler's effect, whenever there is a relative motion between a source of sound and listener, the apparent frequency of sound heard by the listener is different from the actual frequency of sound emitted by the source. Let S be source of sound and L the listener of sound. Let v be the actual frequency of sound emitted by the source and λ be the actual wavelength of the sound emitted.
If v is velocity of sound in still air, then
$\lambda=\frac{v}{V}$
If velocity of listener is v_{L} and velocity of source is v_{S}, then apparent frequency of sound waves heard by the listener is
$v^{\prime}=\frac{v-v_{L}}{v-s_{S}} \times V$

Here, both source and listener are approaching each other.

Then v_{S} is positive and v_{L} is negative.
$\therefore v^{\prime}=\frac{v-\left(-v_{L}\right)}{v-v_{S}} v=\left(\frac{v+v_{L}}{v-v_{S}}\right) v$
i.e., $v^{\prime}>v$

Also,
$\lambda^{\prime}<\lambda$
So, listener listens more frequency and observes less wavelength.
(c)

Third mode of vibration or second overtone has three loops.

It consist of 4 nodes and 3 antinodes.

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	A	A	B	C	B	D	D	B	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	B	B	D	A	A	A	B	A	C			

