

CLASS : XITH SUBJECT : PHYSICS DATE : DPP NO. :4

Topic :- WAVES

		<i>"</i>	MI (MIII (e ma			
1.	Two strings with mass per unit length of 9 gcm ⁻¹ and 25 gcm ⁻¹ are joined together in serie The reflection coefficient for the vibration waves are						
	a) $\frac{9}{25}$	b) $\frac{3}{5}$		c) $\frac{1}{16}$	d) ⁹ / ₁₆		
2.	•	y of the centr		-	and wavelength λ illuminates the arces were incoherent, the intensit $\mathrm{d})I_0/2$	у	
3.	_	ble at 7 <mark>0 cm f</mark>	rom the axi able will be	s. The minimun	sound source of frequency 1000 frequency heard by a listener l 352ms ⁻¹) d) 352 Hz		
4.	A train is approachi	ing with veloc	ity 25 <i>ms</i> ^{–1} z. Frequenc	towards a pede	strian standing on the track, pedestrian is $(v = 30ms^{-1})$ d) 954 Hz		
5.	sound in air is 350 the driver of the eng	ms^{-1} . The fre gine is	quency of th	ne note after ref	mits a note of 1.2 kHz. Speed of election from the wall as heard by		
	a) 2. 4kHz	b) 0.24 k	Hz	c) 1.6 kHz	d) 1.2 kHz		
6.	-	= =		-	tube of 120 cm height. Water is ater necessary for the resonance? d) 25 cm		
7.	When a tuning fork produces sound waves in air, which one of the following is same in the material of tuning fork as well as in air						
	a) Wavelength	b) Freque		c) Velocity	d) Amplitude		

8.	a certain liquid, the free	nmersing the weights in the liquid is						
	a) 1.42	b) 1.77	c) 1.21	d) 1.82				
9.	A stone is dropped into a lake from a tower 500 <i>metre</i> high. The sound of the splash will be heard by the man approximately after							
		b) 21 seconds	c) 10 seconds	d) 14 seconds				
10.	_	orn. The drivers observ gher than the actual sou						
	a) $v/\sqrt{2}$	b) v/2	c) v/3	d) v/4				
11.	A hollow pipe of length 0.8m is closed a one end. At its open end a 0.5 m long uniform vibrating in its second harmonic and it resonates with the fundamental frequency of the tension in the wire is 50N and the speed of sound $320 ms^{-1}$, the mass of the string							
	a) 5 g	b) 10 g	c) 20 g	d) 40 g				
12.	The waves in which the direction of wave motion a) Transverse wave	e par <mark>ticles</mark> of the <mark>medi</mark> un on is <mark>know</mark> n as b) L <mark>ongitudinal wav</mark> es		d) None of these				
13.	Two points on a travelling wave having frequency 500 Hz and velocity 300 ms ⁻¹ are 60° out of phase, then the minimum distance between two points is							
	a) 0.2	b) 0.1	c) 0.5	d) 0.4				
14. Beats are produced by two travelling waves each of loudness I and nearly equal frequencies n_1 and n_2 . The beat frequency will be and maximum loudness hard will be								
	·	b) $(n_1 - n_2)$,4 I						
15.	The equation $y = a \sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right)$, where the symbols carry the usual meaning and a, T and λ at positive, represents a wave of							
	a) Amplitude 2a		b) Period T/λ					
	c) Speed xλ		d) Speed (λ/T)					
16.	The length of an elastic string is a metre when the longitudinal tension is 4 N and b metre when longitudinal tension is 5 N. the length of the string in metre when longitudinal tension is							
	a) a-b	b) 5b-4a	c) $2b - \frac{1}{4}a$	d) 4a-3b				

17. A uniform rope having mass m hangs vertically from a rigid support. A transverse wave pulse is produced at the lower end. The speed (v) of wave pulse varies with height h from the lower end as shown in figure.

- 18. Two wires made up of the same material are of equal length but their radii are in the ratio of 1:2. On stretching each of these two strings by the same tension, the ratio between the fundamental frequencies is
 - a) 1:4

b) 4:1

c) 2:1

- d) 1:2
- 19. The speed of sound in a gas of density ρ at a pressure P is proportional to
 - a) $\left(\frac{p}{\rho}\right)^2$
- b) $\left(\frac{P}{\rho}\right)^{3/2}$
- c) $\sqrt{\frac{\rho}{P}}$

- d) $\sqrt{\frac{P}{\rho}}$
- 20. Two waves of wavelength 1.00m and 1.01m produces 10 beats in 3s. What is the velocity of the wave?
 - a) 150 ms^{-1}
- b) 115.2 ms⁻¹
- c) 336.6 ms^{-1}
- d) 200 ms^{-1}