CLASS : XITh
Solutions

Topic :-WAVES

1

2

3
(c)

Let I_{r} and I_{i} represent the intensities of reflected and incident waves respectively, then
$\frac{\mathrm{I}_{\mathrm{r}}}{\mathrm{I}_{\mathrm{i}}}=\left(\frac{\mu-1}{\mu+1}\right)^{2}$
Where $\mu=\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}$
Or $v=\frac{\sqrt{\frac{\mathrm{T}}{\mathrm{m}_{1}}}}{\sqrt{\frac{\mathrm{~T}}{\mathrm{~m}_{2}}}}=\sqrt{\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}}=\sqrt{\frac{25}{9}}=\frac{5}{3}$
$\therefore \frac{\mathrm{I}_{\mathrm{r}}}{\mathrm{I}_{\mathrm{i}}}=\left[\frac{\left(\frac{5}{3}\right)-1}{\left(\frac{5}{3}\right)+1}\right]^{2}=\frac{1}{16}$
(d)

For two coherent sources, $I_{1}=I_{2}$
$I_{\text {max }}=\left(A_{1}+A_{2}\right)^{2}=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}$
This is given as I_{0} for maximum and zero for minimum. If there are two noncoherent sources, there will be no maximum and minimum intensities. Instead of all the intensity I_{0} at maximum and zero foe minimum, it will be just $I_{0} / 2$
(c)
$v_{s}=r \omega=r \times 2 \pi v$
$=\frac{70}{100} \times 2 \times \frac{22}{7} \times 5=22 \mathrm{~ms}^{-1}$
Frequency is minimum when source is moving away from listener.
$v^{\prime}=\frac{u \times v}{u+u_{s}}=\frac{352 \times 1000}{352+22}=941 \mathrm{~Hz}$
4.
(a)

Since, train (source) is moving towards pedestrian (observer), the perceived frequency will be higher than the original.
$v^{\prime}=v\left(\frac{v+v_{o}}{v-v_{s}}\right)$
Here, $v_{o}=o$ (as observer is stationary)
$v_{s}=25 \mathrm{~ms}^{-1}$ (velocity of source)
$v=350 \mathrm{~ms}^{-1}$ (velocity of sound)
And $v=1 \mathrm{kHz}$ (original frequency)
Hence,
$v^{\prime}=1000\left(\frac{350+0}{350-25}\right)$
$=1000 \times \frac{350}{325}=1077 \mathrm{~Hz}$
$n \propto \sqrt{T} \propto \sqrt{m g} \propto \sqrt{g}$
$\operatorname{As} n_{\omega}=\frac{80}{100} n_{a}=0.8 n_{a}$
$\therefore \frac{g^{\prime}}{g}=\left(\frac{n_{\omega}}{n_{a}}\right)^{2}=(0.8)^{2}=0.64$
If $\rho_{\omega}=$ relative density of water $(=1)$
$\rho_{m}=$ relative density of mass
$\rho_{r}=$ relative density of liquid, then
$\frac{g^{\prime}}{g}=\left(1-\frac{\rho_{\omega}}{\rho_{m}}\right)=0.64$
$\frac{\rho_{\omega}}{\rho_{m}}=1-0.64=.36$
Similarly, in the liquid
$\frac{g^{\prime}}{g}=\left(\frac{n_{L}}{n_{a}}\right)^{2}=(0.6)^{2}=0.36$
$\frac{g^{\prime}}{g}=\left(1-\frac{\rho_{L}}{\rho_{m}}\right)=0.36$
$\frac{\rho_{L}}{\rho_{m}}=1-0.36=0.64$
Dividing Eq. (i) by Eq. (ii), we get
$\frac{\rho_{L}}{\rho_{m}}=\frac{0.64}{0.34}=1.77$
Hence specific gravity of liquid=1.77
(a)

The time taken by the stone to reach the lake
$t_{1}=\sqrt{\left(\frac{2 h}{g}\right)}=\sqrt{\left(\frac{2 \times 500}{10}\right)}=10 \sec \left(\right.$ Using $\left.h=u t+\frac{1}{2} g t^{2}\right)$
Now time taken by sound from lake to the man
$t_{2}=\frac{h}{v}=\frac{500}{340} \approx 1.5 \mathrm{sec}$
\Rightarrow Total time $=t_{1}+t_{2}=10+1.5=11.5 \mathrm{sec}$
(c)

Let n be the actual frequency of sound of horn.
If v_{s} is velocity of car, then frequency of sound striking the cliff (source moving towards listener)
$n^{\prime}=\frac{\left(v+v_{s}\right) n^{\prime}}{v}=\frac{\left(v+v_{s}\right)}{v} \times \frac{v \times n}{\left(v-v_{s}\right)}$
Or $\frac{n^{\prime}}{n}=\frac{v+v_{s}}{v-v_{s}}=2$
$v+v_{s}=2 v-2 v_{s}$
$3 v_{s}=v, v_{s}=\frac{v}{3}$
(b)
$2\left(\frac{v_{1}}{2 \iota_{1}}\right)=\frac{v_{2}}{4 \iota_{2}}$
$\therefore \frac{\sqrt{T / \mu}}{\iota_{1}}=\frac{320}{4 \iota_{2}}$
($\mu=$ mass per unit length of wire)
Or $\frac{\sqrt{50 / \mu}}{0.5}=\frac{320}{4 \times 0.8}$
Solving we get $\mu=0.02 \mathrm{~kg} / \mathrm{m}=20 \mathrm{~g} / \mathrm{m}$
\therefore Mass of string $=20 \mathrm{~g} / \mathrm{m} \times 0.5 \mathrm{~m}=10 \mathrm{~g}$
(a)

In transverse waves medium particles vibrate perpendicular to the direction of propagation of wave
(b)

As $v=n \lambda$
$\therefore \quad \lambda=\frac{v}{n}=\frac{300}{500}=\frac{3}{5} m$
Now, phase difference
$=\frac{2 \pi}{\lambda} \times$ path difference
$\therefore \quad 60^{\circ}=\frac{2 \pi}{\lambda} \times$ path difference
or $\frac{60^{\circ} \times \pi}{180^{\circ}}=\frac{2 \pi \times 5}{3} \times$ path difference
path difference $=\frac{3 \times 60 \times \pi}{2 \pi \times 5 \times 180}=0.1$
(b)

Beat frequency=number of beats s^{-1}
$=n_{1}-n_{2}$
And maximum loudness $=(a+a)^{2}=4 a^{2}=4 I_{1}$ or $4 I_{2}=4 I$
(d)
speed $v=\frac{\omega}{k}=\frac{2 \pi \times \lambda}{T \times 2 \pi}=\frac{\lambda}{T}$
(b)

Let L is the original length of the wire and k is force constant of wire.
Final length $=$ initial length + elongation
$L^{\prime}=L+\frac{F}{k}$
For the condition
$a=L+\frac{4}{k}$
For the second condition
$b=L+\frac{5}{k}$
By solving Eqs. (i) and (ii), we get
$L=5 a-4 b$ and $k=\frac{1}{b-a}$
Now, when the longitudinal tension is 9 N , length of the string
$=L+\frac{9}{k}=5 a-4 b+9(b-a)$
$=5 \mathrm{~b}-4 \mathrm{a}$
(a)

Let m be the total mass of the rope of length l. Tension in the rope at a height h from lower end= weight of rope of length h is $T=\frac{m g}{l}(h)$

As $\quad v=\sqrt{\frac{T}{(m / l)}}$
$v=\sqrt{\frac{m g(h)}{l(m / l)}}=\sqrt{g h}$
$v^{2}=g h$
Which is a parabola. Therefore, h versus v graph is a parabola option (a) is correct.
(c)

The fundamental frequency of a wire is given by
$v=\frac{1}{2 l} \sqrt{\frac{T}{m}}$
Where l is length of wire, T the tension and m the mass per unit length.
$\mathrm{m}=\frac{\text { mass of wire }}{\text { length of wire }}$
$=\frac{\pi r^{2} \mathrm{~L} \times \text { density }}{L}=\pi r^{2} d$
$v=\frac{1}{2 l} \sqrt{\frac{T}{\pi r^{2} d}}$
$\Rightarrow v=\frac{1}{2 r l} \sqrt{\frac{T}{\pi d}}$
$\therefore \frac{v_{1}}{v_{2}}=\frac{r_{2}}{r_{1}}=\frac{2}{1}$
(d)

The speed of sound in a gas of density ρ at pressure P is
$v=\sqrt{\frac{\gamma P}{\rho}}$
(c)
$\mathrm{v}_{1}=\frac{\mathrm{v}}{\lambda_{1}}=\frac{\mathrm{v}}{1.00}$ and $\mathrm{v}_{2}=\frac{\mathrm{v}}{\lambda_{2}}=\frac{\mathrm{v}}{1.01}$
$\therefore \Delta \mathrm{v}=\mathrm{v}_{1}-\mathrm{v}_{2}=\mathrm{v}\left[\frac{1}{1.00}-\frac{0}{1.01}\right]=10$
or $\mathrm{v}=\frac{10 \times 1 \times 1.01}{0.01}=1010$ for 3 s
$\therefore \mathrm{v}=336.6 \mathrm{~ms}^{-1}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	C	D	C	A	C	A	B	B	A	C		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	B	A	B	B	D	B	A	C	D	C		

