CLASS : XITh
DAILY PRACTICE PROBLEMS

DATE :

Topic :-WAVES

1

2
(b)

Here $\rho_{1}=\rho_{2} ; \frac{r_{1}}{r_{2}}=\frac{1}{2}, T_{1}=T_{2}$
$n_{1}=\frac{1}{2 l r_{1}} \sqrt{\frac{T_{1}}{\pi \rho_{1}}} ; n_{2}=\frac{1}{2 l r_{2}} \sqrt{\frac{T_{2}}{\pi \rho_{2}}}$
$\frac{n_{1}}{n_{2}}=\frac{r_{2}}{r_{1}}=2$
(c)

Intensity \propto (amplitude) ${ }^{2}$
As $A_{\text {max }}=2 a_{o}\left(a_{o}=\right.$ amplitude of one source $)$ so $I_{\max }=4 I_{o}$
(b)

EM waves do not require medium for their propagation
(a)

Velocity of wave (v) $=360 \mathrm{~m} / \mathrm{s}$
Frequency, $\mathrm{n}=600 \mathrm{~Hz}$
Phase difference, $\Delta \Phi=60 o$
If the minimum distance between two points is Δx, then
$\Delta x=\frac{\lambda}{2 \pi} \times \Delta \Phi$
$\Delta \mathrm{x}=\frac{\mathrm{v}}{2 \pi \mathrm{n}} \times \Delta \Phi$
Or
$\Delta \mathrm{x}=\frac{360}{2 \pi \times 600} \times 60$
$\Delta x=\frac{360}{2 \pi \times 600} \times \frac{\pi}{3}$
$\Delta \mathrm{x}=\frac{1}{10} \mathrm{~m}$
$\Delta \mathrm{x}=10 \mathrm{~cm}$
(b)

Velocity of sound increases if the temperature increases. So with $v=n \lambda$, if v increases n
will increase
At $27^{\circ} \mathrm{C}, v_{1}=n \lambda$, at $31^{\circ} \mathrm{C}, v_{2}=(n+x) \lambda$
Now using $v \propto \sqrt{T} \quad\left[\because v=\sqrt{\frac{\gamma R T}{M}}\right]$
$\frac{v_{2}}{v_{1}}=\sqrt{\frac{T_{2}}{T_{1}}}=\frac{n+x}{n}$
$\Rightarrow \frac{300+x}{300}=\sqrt{\frac{(273+31)}{(273+27)}}=\sqrt{\frac{304}{300}}=\sqrt{\frac{300+4}{300}}$
$\Rightarrow 1+\frac{x}{300}=\left(1+\frac{4}{300}\right)^{1 / 2}=\left(1+\frac{1}{2} \times \frac{4}{300}\right) \Rightarrow x=2$
$\left[\because(1+x)^{n}=1+n x\right]$
(c)

We know that intensity $I \propto a^{2}$, where a is amplitude of the wave. The maximum amplitude is the sum of two amplitudes i.e., $(a+a=2 a)$
Hence, maximum intensity $\propto 4 a^{2}$
Therefore the required ratio i.e., ratio of maximum intensity (loudness) and intensity (loudness)of one wave is given by n,
$n=\frac{4 a^{2}}{a^{2}}=4$
(b)

As given,
$y=10^{-6} \sin \left(100 t+20 x+\frac{\pi}{4}\right)$
Comparing it with
$y=a \sin (\omega t+k x+\phi)$
We find,
$\omega=100 \mathrm{rads}^{-1}, k=20 / \mathrm{m}$
$\therefore \quad v=\frac{\omega}{k}=\frac{100}{20}=5 \mathrm{~ms}^{-1}$
(d)

As source is moving towards observer,
$\therefore v^{\prime}=\frac{u v}{u-v_{1}}=\frac{333 \times 450}{333-30}=499.5=500$
(b)

When the piston is moved through a distance of 8.75 cm , the path difference produced is
$2 \times 8.75 \mathrm{~cm}=17.5 \mathrm{~cm}$.
This must be equal to $\frac{\lambda}{2}$ for maximum to change to minimum.
$\therefore \frac{\lambda}{2}=17.5 \mathrm{~cm} \Rightarrow \lambda=35 \mathrm{~cm}=0.35 \mathrm{~m}$

So, $v=n \lambda \Rightarrow n=\frac{v}{\lambda}=\frac{350}{0.35}=1000 \mathrm{~Hz}$
(b)
$n_{1} l_{1}=n_{2} l_{2} \Rightarrow 250 \times 0.6=n_{2} \times 0.4 \Rightarrow n_{2}=375 \mathrm{~Hz}$
(b)
$v=\sqrt{\frac{T}{m}}=\sqrt{\frac{T}{\pi r^{2} \rho}}$
$v \propto \frac{\sqrt{T}}{r} \Rightarrow \frac{v_{A}}{v_{B}}=\sqrt{\frac{T_{A}}{T_{B}}} \cdot \frac{r_{B}}{r_{A}}=\sqrt{\frac{1}{2}} \cdot \frac{1}{2}=\frac{1}{2 \sqrt{2}}$
(b)

Phase difference $=\frac{2 \pi}{\lambda} \times$ path difference
$\Rightarrow \frac{\pi}{2}=\frac{2 \pi}{\pi} \times 0.8 \Rightarrow \lambda=4 \times 0.8=3.2 \mathrm{~m}$
Velocity $v=n \lambda=120 \times 3.2=384 \mathrm{~m} / \mathrm{s}$
(a)

Since there is no relative motion between the source and listener, so apparent frequency equals original frequency
(c)

Since there is no relative motion between the listener and source, hence actual frequency will be heard by listener
(a)
$l_{1}+x=\frac{\lambda}{4}=22.7 ;$
$l_{2}+x=\frac{3 \lambda}{4}=70.2 ; l_{3}+x=\frac{5 \lambda}{4}$
$x=\frac{l_{2}-3 l_{1}}{2}=\frac{70.2-68.1}{2}=\frac{2.1}{2}=1.05 \mathrm{~cm}$
$\frac{l_{3}+x}{l_{1}+x}=5$
$l_{3}=5 l_{1}+4 x=5 \times 22.7+4 \times 1.05=117.7 \mathrm{~cm}$
(b)
$\therefore \frac{v}{v_{c}}=\frac{c / 2 \lambda}{v / 4 \lambda}=\frac{2}{1}$
(c)

Comparing with $y=a \cos (\omega t+k x-\phi)$,
We get $k=\frac{2 \pi}{\lambda}=0.02 \pi \Rightarrow \lambda=100 \mathrm{~cm}$
Also, it is given that phase difference between particles $\Delta \phi=\frac{\pi}{2}$. Hence path difference between them
$\Delta=\frac{\lambda}{2 \pi} \times \Delta \phi=\frac{\lambda}{2 \pi} \times \frac{\pi}{2}=\frac{\lambda}{4}=\frac{100}{4}=25 \mathrm{~cm}$
(d)

Beat frequency of heart $=1.25 \mathrm{~Hz}$
\therefore Number of beats in 1 minute $=1.25 \times 60=75$
(a)
$n_{A}=$?, $n_{B}=$ Known frequency $=320 \mathrm{~Hz}$
$x=4 \mathrm{bps}$, which remains same after filing.
Unknown fork A if filed so $n_{A} \uparrow$
Hence $n_{A} \uparrow-n_{B}=x \rightarrow$ Wrong
$n_{B}-n_{A} \uparrow=x \rightarrow$ Correct
$\Rightarrow n_{A}=n_{B}-x=320-4=316 \mathrm{~Hz}$.
This is the frequency before filing.
But in question after filing is asked which must be greater than 316 Hz , such that it produces 4 beats per sec. Hence it is 324 Hz

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	B	A	C	B	B	C	B	D	B	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	B	B	A	C	A	A	B	C	D	A			

