CLASS : XITh
Solutions

Topic :-WAVES

2

6
(b)

With temperature rise frequency of tuning fork decreases. Because, the elastic properties are modified when temperature is changed
Also, $n_{1}=n_{0}(1-0.00011 t)$
Where $n_{t}=$ frequency at $t^{\circ} \mathrm{C}, n_{0}=$ frequency at $0^{\circ} \mathrm{C}$
(c)

Since solid has both the properties (rigidly and elasticity)
(c)

Given $y=5 \sin \frac{\pi x}{3} \cos 40 \pi t$
Comparing with $y=2 a \cos \frac{2 \pi v t}{\lambda} \sin \frac{2 \pi x}{\lambda} \Rightarrow \lambda=6 \mathrm{~cm}$
\therefore The separation between adjacent nodes $=\frac{\pi}{2}=3 \mathrm{~cm}$
(c)

For open pipe $f_{1}=\frac{v}{2 l}$ and for closed pipe
$f_{2}=\frac{v}{4 \times\left(\frac{l}{4}\right)}=\frac{v}{l}=2 f_{1} \Rightarrow \frac{f_{1}}{f_{2}}=\frac{1}{2}$
(d)

From Doppler's effect in sound,
$v^{\prime}=v_{o}\left(\frac{v \pm v_{o}}{v \pm v_{s}}\right)$
In the given case, $v_{s}=0.5 v, v_{o}=0, v_{o}-3 \mathrm{kHz}$
$\therefore v^{\prime}=3 \times \frac{v}{v-0.5 v}=6 \mathrm{kHz}$
(c)

When piston moves a distance x_{1}, path difference change by 2 xs.
\therefore the path difference between maxima and consecutive minima $=\lambda / 2$
$\therefore 2 x=\lambda / 2$
Or
$\lambda=4 \mathrm{x}=4 \times 9 \mathrm{~cm}=36 \mathrm{~cm}=0.36 \mathrm{~m}$
$n=\frac{v}{\lambda}=\frac{360}{0.36}=1000 \mathrm{~Hz}$

8
(a)

Frequency of closed pipe
$\mathrm{n}_{1}=\frac{\mathrm{v}}{4 \mathrm{t}_{1}} \Rightarrow \mathrm{t}_{1}=\frac{\mathrm{v}}{4 \mathrm{n}_{1}}$
Frequency of open pipe,
$\mathrm{n}_{2}=\frac{\mathrm{v}}{2 \mathrm{t}_{1}} \Rightarrow \mathrm{t}_{2}=\frac{\mathrm{v}}{2 \mathrm{n}_{2}}$
When both pipes are joined then length of closed pipe
$\mathrm{t}=\mathrm{t}_{1}+\mathrm{t}_{2}$
$\frac{\mathrm{v}}{4 \mathrm{n}}=\frac{\mathrm{v}}{4 \mathrm{n}_{1}}+\frac{\mathrm{v}}{2 \mathrm{n}_{2}}$
Or
$\frac{1}{2 \mathrm{n}}=\frac{1}{2 \mathrm{n}_{1}}+\frac{1}{2 \mathrm{n}_{2}}$
Or
$\frac{1}{2 n}=\frac{\mathrm{n}_{2}+2 \mathrm{n}_{1}}{2 \mathrm{n}_{1} \mathrm{n}_{2}}$
Or
$\mathrm{n}=\frac{\mathrm{n}_{1} \mathrm{n}_{2}}{\mathrm{n}_{2}+2 \mathrm{n}_{1}}$
$\therefore n_{2}>n_{1},\left(n_{2}-n_{1}\right)=3$
As $n \propto \sqrt{T}$
$\therefore \frac{n_{2}}{n_{1}}=\sqrt{\frac{T}{16}}=\sqrt{\frac{T}{4}}$

If n_{1} corresponds to 4: n_{2} corresponds to $3+4=7$, which is \sqrt{T}. Therefore, $T=49 \mathrm{~N}$

19
(b)

Apparent frequency in this case $n^{\prime}=\frac{n\left(v+v_{o}\right)}{v}$
$\because \frac{v+v_{o}}{v}>1 \Rightarrow \frac{n^{\prime}}{n}>$ i.e. $n^{\prime}>n$
(b)

Speed $=360$ revolutions per min
$=360 / 60$ revolutions per $\mathrm{sec}=6$
\therefore frequency $=6 \times 60=360$
(a)

Sending wave mode arises from the combination of reflection and impedance such that the reflected wave interfere and impedance such that the reflected waves interfere constructively with the incident wave.
Wave $z_{1}=A \sin (k x-\omega t)$ is travelling along positive x -direction, $z_{2}=A \sin (k x+\omega t)$ is travelling along positive y-direction. Hence, $z_{1}+z_{2}$ produce standing wave because they travel along same axis but in opposite direction.
(a)

From doppler's effect, perceived frequency
$v^{\prime}=v\left(\frac{v-v_{o}}{v-v_{s}}\right)$
$\frac{9}{8}=\frac{340}{340-v_{s}}$
$\Rightarrow 9\left(340-v_{s}\right)=8 \times 340$
$\Rightarrow v_{s}=37.7 \mathrm{~ms}^{-1}=40 \mathrm{~ms}^{-1}$

(b)

From the given equation amplitude $a=0.04 m$
Frequency $=\frac{\text { Co-efficient of } \mathrm{t}}{2 \pi}=\frac{\pi / 5}{2 \pi}=\frac{1}{10} \mathrm{~Hz}$
Wave length $\lambda=\frac{2 \pi}{\text { Co-efficient of } x}=\frac{2 \pi}{\pi / 9}=18 \mathrm{~m}$
Wave speed $v=\frac{\text { Co-efficient of } t}{\text { Co-efficient of } x}=\frac{\pi / 5}{\pi / 9}=1.8 \mathrm{~m} / \mathrm{s}$
(a)

Frequency of waves remains same, i.e. 60 kHz
and wavelength $\lambda=\frac{v}{n}=\frac{330}{60 \times 10^{3}}=5.5 \mathrm{~mm}$
(a)

Speed of sound $v=\sqrt{\frac{\gamma P}{d}} \Rightarrow \frac{v_{1}}{v_{2}}=\sqrt{\frac{d_{2}}{d_{1}}}[\because P$-constant $]$
(b)

$$
2\left(d_{1}+d_{2}\right)=v\left(t_{1}+t_{2}\right) \Rightarrow d_{1}+d_{2}=\frac{330 \times(3+5)}{2}=1320 \mathrm{~m}
$$

(d)

When plucked at one fourth it gives two loops, and hence $2^{\text {nd }}$ harmonic is produced.

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	B	B	C	C	C	D	C	A	B	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	B	B	A	A	B	A	B	A	B	D		

