CLASS : XITh
Solutions

Topic :-WAVES

1
(c)

For an organ pipe open at one end,
Frequency of 1st overtone $n_{1}=\frac{3 v}{4 l_{1}}$
For the organ pipe open at both ends,
Frequency of 3rd harmonic, $n_{2}=\frac{3 v}{2 l_{2}}$
As $n_{1}=n_{2}$
$\therefore \frac{3 v}{4 l_{1}}=\frac{3 v}{2 l_{2}}$ or $\frac{l_{1}}{l_{2}}=\frac{2}{4}=\frac{1}{2}$
(c)

After two seconds each wave travel a distance of $2.5 \times 2=5 \mathrm{~cm}$ i.e. the two pulses will meet in mutually opposite phase and hence the amplitude of resultant will be zero.

3
(b)
$\frac{I_{1}}{I_{2}}=\frac{a_{1}^{2}}{a_{2}^{2}} \Rightarrow \frac{I_{1}}{I_{2}}=\frac{25}{100}=\frac{1}{4}$
(a)

Frequency
$v=\frac{1}{2 l} \sqrt{\left(\frac{T}{m}\right)}$
$\therefore v+\frac{3}{2}=\frac{1}{2 l} \sqrt{\left(\frac{101 T}{100 m}\right)}$
$=1.005 \times \frac{1}{2 l} \sqrt{\left(\frac{T}{m}\right)}$
$\Rightarrow \mathrm{v}+1.5=1.005 \mathrm{v}$
$\Rightarrow \mathrm{v}=300 \mathrm{~Hz}$
(c)

Reverberation time, $T=\frac{0.61 \mathrm{~V}}{a S}$
$\Rightarrow \frac{T_{1}}{T_{2}}=\left(\frac{V_{1}}{V_{2}}\right)\left(\frac{S_{2}}{S_{1}}\right)=\left(\frac{V}{8 V}\right)\left(\frac{4 S}{S}\right)=\frac{1}{2}$
$\Rightarrow T_{2}=2 T_{1}=2 \times 1=2 \mathrm{sec}$. $\left[\because T_{1}=1 \mathrm{sec}\right]$
(b)

As $\frac{v}{4 l_{1}}=\frac{3 v}{2 l_{2}}$
$\therefore \frac{l_{1}}{l_{2}}=\frac{2}{12}=\frac{1}{6}$
(d)

It is known that Doppler's effect depends on velocity not on distance. When the source is approaching the stationary observer, the apparent frequency heard by the observer is
$n^{\prime}=\frac{v \times n}{v-v_{s}}=$ constant
But $n^{\prime}>n$.
When the source has crossed the observer, apparent frequency heard by the observer is
$n^{\prime \prime}=\frac{v \times n}{v+v_{s}}=$ another constant
But $n^{\prime \prime}<n$.option (d) is correct.

Sound geard directly
$v_{1}=v_{o}\left(\frac{v}{v-v_{s}}\right)$
$\therefore 970=1000\left(\frac{330}{330+v_{s}}\right)$
Or $v_{s}=10.2 \mathrm{~ms}^{-1}$

The frequency of reflected sound is given by
$v_{2}=v_{o}\left(\frac{v}{v-v_{s}}\right)=1000\left(\frac{330}{330-10.2}\right)$
$=\frac{1000 \times 330}{319.8} \approx 1032 \mathrm{~Hz}$
(c)

A pulse of a wave train when travels along a stretched string and reaches the fixed end of the string, then it will be reflected back to the same medium and the reflected ray suffers a phase change of π with the incident wave but wave velocity after reflection does not change.
(a)

Given, $\mathrm{y}(\mathrm{x}, \mathrm{t})=0.005 \cos (\mathrm{ax}-\beta \mathrm{t})$
$\frac{2 \pi}{\lambda}=a \quad$ and $\frac{2 \pi}{T}=\beta$
So,
$a=\frac{2 \pi}{0.08}=25 \pi$ and $\beta=\frac{2 \pi}{2}=\pi$
(a)

Length of air column in resonance is odd integer multiple of
$\frac{\lambda}{4}$
And prongs of tuning fork are kept in a vertical plane.
(b)

As $p \sqrt{T}=$ constant $\therefore \frac{T_{2}}{T_{1}}=\frac{p_{1}^{2}}{p_{2}^{2}}=\frac{4^{2}}{6^{2}}$
$T_{2}=\frac{16}{36} T_{1}=\frac{16}{36} \times 65=29$
\therefore Weight to be removed $=65-29=36 \mathrm{~g}$
3 (c)
The amplitude of a plane progressive wave $=a$, that of a cylindrical progressive wave is a / \sqrt{r}.
(a)

The average power per unit area that is incident perpendicular to the direction of propagation is called the intensity, i.e.,
$I=\frac{P}{4 \pi r^{2}}$
Or
$I \propto \frac{I}{r^{2}}$
Or
$\frac{I_{2}}{I_{2}}=\left(\frac{r_{2}}{r_{1}}\right)^{2}$

Here, $r_{1}=2 m, r_{2}=3 m$
$\therefore \frac{I_{1}}{I_{2}}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$
(a)

Wavelength of closed organ pipe is
$\lambda=\frac{4 L}{(2 n-1)}$
Putting $n=1,2,3, \ldots$. . we find that
$\lambda_{1}=4 L, \frac{4 L}{3}, \frac{4 L}{5}, \ldots$.
So frequency of vibration corresponding to modes
$\mathrm{n}=1,2,3 \ldots$..is
$v_{1}=\frac{v}{\lambda_{1}}=\frac{v}{4 L}=v_{1}$
$v_{2}=\frac{v}{\lambda_{2}}=\frac{v}{4 L / 3}=\frac{3 v}{4 L}=3 v_{1}$
$v_{2}=\frac{v}{\lambda_{3}}=\frac{v}{4 L / 5}=\frac{5 v}{4 L}=5 v_{1}$
$\therefore v_{1} L v_{2}: v_{3} \ldots=1: 3: 5: \ldots$
So, only odd harmonics are present.
(c)

The standard equation of wave is
$Y=a \sin (\omega t-k x)$
Where a is amplitude, ω the angular velocity and x the displacement at instant t . Given equation is
$\mathrm{Y}=0.1 \sin (100 \pi t-k x)$
Comparing Eq. (i) with Eq. (ii), we get
\therefore Wave number $=\frac{\omega}{\mathrm{v}}=\frac{100 \pi}{100}=\pi \mathrm{m}^{-1}$
(a)

The velocity of wave
$v=\frac{\omega(\text { Co }- \text { efficient of } t)}{k(\text { Co }- \text { efficient of } x)}=\frac{10}{1}=10 \mathrm{~m} / \mathrm{s}$
(a)

Speed of wave on a string
$v=\sqrt{\frac{T}{m}}$
Or
$v \propto \sqrt{T}$
Or
$\frac{v_{2}}{v_{1}}=\sqrt{\frac{T_{2}}{T_{1}}}$
Or
$T-\frac{2}{T_{1}}=\frac{v_{2}^{2}}{v_{1}^{2}}$
Or
$\frac{T_{2}-T_{1}}{T_{1}}=\frac{v_{2}^{2}-v_{1}^{2}}{v_{1}^{2}}$
Initially, $T_{1}=120 \mathrm{~N}$,
$v_{1}=150 \mathrm{~ms}^{-1}$
$v_{2}=v_{1}+\frac{20}{100} v_{1}$
$=v_{1}+\frac{v_{1}}{5}=\frac{6 v_{1}}{5}$
$=\frac{6}{5} \times 150=180 \mathrm{~ms}^{-1}$
So, from eq. (i), we get
$\frac{T_{2}-T_{1}}{T_{1}}=\frac{(180)^{2}-(150)^{2}}{(150)^{2}}$
$=\frac{30 \times 330}{150 \times 150}=0.44$
Hence, \% increases in tension
$=\left(\frac{T_{2}-T_{1}}{T_{1}}\right) \times 100=0.44 \times 100=44 \%$
(c)
$n \propto \sqrt{T} \Rightarrow \frac{\Delta n}{n}=\frac{\Delta T}{2 T}$
If tension increases by 2%, then frequency must increases by 1%.
If initial frequency $n_{1}=n$ then final frequency $n_{2}-n_{1}=5$
$\Rightarrow \frac{101}{100} n-n=5 \Rightarrow n=500 \mathrm{~Hz}$
Short trick : If you can remember then apply following formula to solve such type of problems.
Initial frequency of each wire (n)
$=\frac{(\text { Number of beats heard per sec }) \times 200}{(\text { per centage change in tension of the wire })}$
Here $n=\frac{5 \times 200}{2}=500 \mathrm{~Hz}$

ANSWER-KEY														
Q.	1	2	3	4	5	6	7	8	9	10				
A.	C	C	B	A	C	B	D	B	C	A				
Q.	11	12	13	14	15	16	17	18	19	20				
A.	A	B	C	A	A	C	A	A	C	C				

