CLASS : XITh
Solutions
SUBJECT : PHYSICS DPP NO. : 1

Topic :-WAVES

1
(c)

Resultant amplitude $=\sqrt{a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} \cos \phi}$
$=\sqrt{0.3^{2}+0.4^{2}+2 \times 0.3 \times 0.4 \times \cos \frac{\pi}{2}}=0.5 \mathrm{~cm}$
(d)

Infrasonic waves have frequency less than (20 Hz) audible sound and wavelength more than audible sound
(c)

Apparent frequency
$v^{\prime}=v\left(\frac{v-v_{L}}{v-v_{S}}\right)$
$=165\left(\frac{355+5}{355-5}\right)$
$\left(\because v_{L}=-5 \mathrm{~ms}^{-1}, v_{s}=5 \mathrm{~ms}^{-1}\right)$
$=165 \times \frac{340}{330}=170 \mathrm{~Hz}$
Therefore, the number of beats heard
$=170-165=5$
(c)

Maximum velocity $v_{\text {max }} f a=2 \times 300 \times 0.1$
$=60 \mathrm{mcms}^{-1}$
(c)

String vibrates in five segment so $\frac{5}{2} \lambda=l \Rightarrow \lambda=\frac{2 l}{5}$
Hence $n=\frac{v}{\lambda}=5 \times \frac{v}{2 l}=5 \times \frac{20}{2 \times 10}=5 \mathrm{~Hz}$
(a)

Energy is not carried by stationary waves
8 (b)
By using $v=\sqrt{\frac{\gamma R T}{M}} \Rightarrow v \propto \sqrt{T}$
$\frac{v_{2}}{v_{1}}=\sqrt{\frac{T_{2}}{T_{1}}}=\sqrt{\frac{T+600}{T}}=\sqrt{3} \Rightarrow T=300 K=27^{\circ} \mathrm{C}$
(a)

For closed pipe $n=\frac{v}{4 l} \Rightarrow n=\frac{332}{4 \times 42}=2 \mathrm{~Hz}$
(a)

Heren ${ }_{1}=200 \mathrm{~Hz}$.
Number of beats $\mathrm{s}^{-1} ; \mathrm{m}=4$
$\therefore n_{2}=200 \pm 4=204$ or 196 Hz
On loading fork 2, its frequency decreases. And number of beats s ${ }^{-1}$ increases to 6 . Therefore m is negative.
$n_{2}=200-4=196 \mathrm{~Hz}$
(d)

It a is amplitude of each wave,
$I_{0}=k(a+a)^{2}=4 k a^{2}$
Let ϕ be the phase difference to obtain the intensity $I_{0} / 2$.
$\therefore \frac{I_{0}}{2}=k a_{r}^{2}=k\left(a^{2}+a^{2}+2 a a \cos \phi\right)$
$=k 2 a^{2}(1+\cos \phi)=k 4 a^{2} \cos ^{2} \frac{\phi}{2}$
$=I_{0} \cos ^{2} \phi / 2$
$\cos \frac{\phi}{\sqrt{2}}=\frac{1}{\sqrt{2}}=\cos 45^{\circ} \therefore \phi=90^{\circ}$.
If Δx is path difference between the two waves, then
$\Delta x=\frac{\lambda}{2 \pi} \phi=\frac{\lambda}{2 \pi}\left(\frac{\pi}{2}\right)=\frac{\lambda}{4}$
Therefore, displacement of sliding tube $\frac{1}{2}(\Delta x)=\lambda / 8$
(b)

Given that, two waves
$y=a \sin (\omega t-k a)$
And $\mathrm{y}=\mathrm{a} \cos (\omega \mathrm{t}-\mathrm{kx})$
Here, the phase difference between the two waves is $\frac{\pi}{2}$.

So, the resultant amplitude
$A=\sqrt{a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} \cos \Phi}$
$\left(\right.$ Here $\left.a_{1}=a, a_{2}=a, \Phi=\frac{\pi}{2}\right)$
$\therefore \mathrm{A}=\sqrt{\mathrm{a}^{2}+\mathrm{a}^{2}+2 \mathrm{a} \operatorname{acos} \frac{\pi}{2}}$
or $A=\sqrt{a^{2}+a^{2}+0}$
$\Rightarrow A=\sqrt{2} a$
(a)

For the end correction x ,
$\frac{l_{2}+x}{l_{1}+x}=\frac{3 \lambda / 4}{\lambda / 4}=3$
$\Rightarrow \quad x=\frac{l_{2}-3 l_{1}}{2}$
$=\frac{70.2-3 \times 22.7}{2}=1.05 \mathrm{~cm}$
(d)
$\frac{d y}{d t}=y_{0} \cos 2 \pi\left[f t-\frac{x}{\lambda}\right] \times 2 \pi f$
\therefore maximum particle velocity $=\left(\frac{d y}{d t}\right)_{\max }=2 \pi f y_{0} \times 1$
Wave velocity $=f \lambda$
As $2 \pi f y_{0}=4 f \lambda, \therefore \quad \lambda=\frac{2 \pi y_{0}}{4}=\frac{\pi y_{0}}{2}$
(c)

If the temperature changes then velocity of wave and its wavelength changes. Frequency amplitude and time period remain constant
(c)

Intensity=energy/sec/area=power/area.
From a point source, energy spreads over the surface of a sphere of radiusr.
Intensity $=\frac{P}{A}=\frac{P}{4 \pi r^{2}} \propto \frac{1}{r^{2}}$
But Intensity $=(\text { Amplitude })^{2}$
$\therefore(\text { Amplitude })^{2} \propto \frac{1}{r^{2}}$ or Amplitude $\propto \frac{1}{r}$
At distance $2 r$,amplitude becomes $A / 2$
(d)

Reverberation time $T=\frac{k V}{\alpha S} \Rightarrow T \propto V$
(a)

As the string vibrates in n loops, therefore,
$l=\frac{n \lambda}{2}$
Therefore, v would become $\frac{1}{2}$ times.

As $v \propto \sqrt{T}$
Therefore, to make v half time, T must be made $\frac{1}{4}$ time ie $\mathrm{M} / 4$.
(c)

Both listeners, hears the same frequencies
(d)

Speed of sound, doesn't depend upon pressure and density medium at constant temperature

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	C	D	C	C	C	C	A	B	A	A	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	D	B	A	D	C	C	D	A	C	D	

