Class : XIIth
Solutions
Subject : PHYSICS
DPP No. : 9

Topic :-WAVE OPTICS

1
(d)

By using $f_{p}=\frac{r^{2}}{(2 p-1) \lambda}$
For first $H P Z r=\sqrt{f_{p} \lambda}=\sqrt{0.6 \times 6000 \times 10^{-10}}$
$=6 \times 10^{-4} \mathrm{~m}$
2
(d)

For liquid A
$L_{1}=20 \mathrm{~cm}, \theta_{1}=38^{\circ} ;$ concentration $=C_{1}$
Specific rotation $a_{1}=\frac{\theta_{1}}{L_{1} C_{1}}=\frac{38^{\circ}}{20 \times C_{1}}$
Similarly, for liquid B
$L_{2}=30 \mathrm{~cm}, \theta_{2}=-24^{\circ}$, concentration $=C_{2}$
Specific rotation $a_{2}=\frac{\theta_{2}}{L_{2} C_{2}}=\frac{\left(-24^{\circ}\right)}{30 \times C_{2}}$
The mixture has 1 part of liquid A and 2 parts of liquid B,

$$
\begin{aligned}
& \therefore C_{1}^{\prime}: C_{2}^{\prime}=1: 2 \\
& \theta=\left\{a_{1} C_{1}^{\prime}+a_{2} C_{2}^{\prime}\right\} l \\
& =\left\{\frac{38^{\circ}}{20 \times C_{1}} \times \frac{C_{1}}{3}+\frac{\left(-24^{\circ}\right)}{30 \times C_{2}} \times \frac{2 C_{2}}{3}\right\} \times 30 \\
& =19^{\circ}-16^{\circ}=3^{\circ}
\end{aligned}
$$

Thus, the optical rotation of mixture is $+3^{\circ}$ in right had direction.
(b)
$c=\frac{E}{B} \Rightarrow B=\frac{E}{c}=\frac{18}{3 \times 10^{8}}=6 \times 10^{-8} T$
(a)

For an electromagnetic wave
Velocity $c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=3 \times 10^{8} \mathrm{~ms}^{-1}$
Air acts almost as vacuum
$\therefore a=3$ approximately
$\theta_{0}=\frac{\beta}{D}=\frac{D \lambda}{d} \times \frac{1}{D}=\frac{\lambda}{d}$
$\theta_{0}=1^{\circ}=\pi / 180 \mathrm{rad}$
And $\lambda=6 \times 10^{-7} \mathrm{~m}$
$d=\frac{\lambda}{\theta_{0}}=\frac{180}{\pi} \times 6 \times 10^{-7}$
$=3.44 \times 10^{-5} \mathrm{~m}$
$=0.03 \mathrm{~mm}$
(b)

When a thin glass plate of thickness t is placed over one of the slits, then lateral displacement is given by

$x=\frac{(\mu-1) t D}{d}$

Given, $\mu=1.5, t=0.06 \mathrm{~mm}=6 \times 10^{-5} \mathrm{~m}$
$D=2 \mathrm{~m}, d=1 \mathrm{~mm}=1 \times 10^{-3} \mathrm{~m}$
Putting the values in the above relation, we get
$x=\frac{(1.5-1) \times 6 \times 10^{-5} \times 2}{1 \times 10^{-3}}$
$=0.5 \times 12 \times 10^{-2}=0.06 \mathrm{~m}=6 \mathrm{~cm}$
(d)

To see interference, we need two sources with the same frequency and with a constant phase difference. In the given waves,

$$
X_{1}=a_{1} \sin \omega t
$$

And $X_{4}=a_{1} \sin (\omega t+\delta)$
Have a constant phase difference δ, so interference is possible between them.
For $X_{1}=a_{1} \sin \omega t$
And $X_{2}=a_{2} \sin 2 \omega t$
Frequency is not equal and there is no constant phase difference.
For $X_{1}=a_{1} \sin \omega t$
And $X_{3}=a_{1} \sin \omega_{1} t$,
Frequency is different and there is no constant phase difference.
(a)

Intensity, $I_{0}=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}}$
If $I_{1}=I_{2}=I($ Let $)$
Then $I_{0}=4 I$
When one slit is covered then $I_{2}=0$
$\therefore I_{0}^{\prime}=I=\frac{I_{0}}{4}$
(a)

For interference phase difference must be constant
(d)
$\beta=\frac{\lambda D}{d}=\frac{600 \times 10^{-9} \times 2}{1 \times 10^{-3}}=12 \times 10^{-4} \mathrm{~m}$
So, distance between the first dark fringes on either side of the central bright fringe
$=2 \beta$
$=2 \times 12 \times 10^{-4} \mathrm{~m}$
$=24 \times 10^{-4} \mathrm{~m}$
$=2.4 \mathrm{~mm}$
(a)
$\omega=6 \times 10^{8}$
$k=\frac{\omega}{v}=\frac{6 \times 10^{8}}{3 \times 10^{8}}=2 \mathrm{~m}^{-1}$
(d)

If shift is equivalent to n fringes then
$n=\frac{(\mu-1) t}{\lambda} \Rightarrow n \propto t \Rightarrow \frac{t_{2}}{t_{1}}=\frac{n_{2}}{n_{1}} \Rightarrow t_{2}=\frac{n_{2}}{n_{1}} \times t$
$t_{2}=\frac{20}{30} \times 4.8=3.2 \mathrm{~mm}$
(c)

Doppler shift (Source moving towards observer)
$\lambda^{\prime}=\lambda\left(1-\frac{V}{C}\right)$
$5400 \AA=6200 \AA\left(1-\frac{V}{C}\right)$
$V=\left[1-\frac{54}{62}\right] C=3.9 \times 10^{7}$ approx
(b)

The optical path between any two points is proportional to the time of travel.
The distance traversed by light in a medium of refractive index μ in time t is given by
$d=v t$
Where v is velocity of light in the medium. The distance traversed by light in a vacuum in this time.
$\Delta=c t$
$=c \cdot \frac{d}{v}$
[From Eq.(i)]
$=d \frac{c}{v}=\mu d$

$$
\begin{equation*}
\text { (Since, } \mu=\frac{c}{v} \text {) } \tag{ii}
\end{equation*}
$$

This distance is the equivalent distance in vacuum and is called optical path.
Here, optical path for first ray $=n_{1} L_{1}$
Optical path for second ray $=n_{2} L_{2}$
Path difference $=n_{1} L_{1}-n_{2} L_{2}$
Now, phase difference
$=\frac{2 \pi}{\lambda} \times$ path difference
$=\frac{2 \pi}{\lambda} \times\left(n_{1} L_{1}-n_{2} L_{2}\right)$
(c)

$$
\beta=\frac{\beta}{\lambda}(\mu-1) \mathrm{t}
$$

$$
\Rightarrow t=\frac{\lambda}{(\mu-1)}=\frac{\lambda}{(1.5-1)}=2 \lambda
$$

(c)

The number of fringes on either side of centre C of screen is
$n_{1}=\left[\frac{A C}{\beta}\right]=\left[\frac{0.5}{0.021}\right]=[23.8]=23$
\therefore Total number of fringes
$=2 n_{1}+$ fringe at centre
$=2 n_{1}+1=2 \times 23+1$
$=46+1=47$
In Young's experiment, the number of fringes should be odd.

(a)

When unpolarised light is made incident at polarizing angle, the reflected light is plane polarized in a direction perpendicular to the plane of incidence.
Therefore \vec{E} in reflected light will vibrate in vertical plane with respect to plane of incidence

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	D	D	B	A	C	B	D	A	A	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	D	A	D	C	B	C	C	A	B	B		

